1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
import torch
import torch.nn as nn
from diffusers import ModelMixin, ConfigMixin
from diffusers.configuration_utils import register_to_config
from diffusers.models.cross_attention import CrossAttention
from diffusers.utils.import_utils import is_xformers_available
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class LoRALinearLayer(nn.Module):
def __init__(self, in_features, out_features, rank=4):
super().__init__()
if rank > min(in_features, out_features):
raise ValueError(
f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}"
)
self.lora_down = nn.Linear(in_features, rank, bias=False)
self.lora_up = nn.Linear(rank, out_features, bias=False)
self.scale = 1.0
nn.init.normal_(self.lora_down.weight, std=1 / rank)
nn.init.zeros_(self.lora_up.weight)
def forward(self, hidden_states):
down_hidden_states = self.lora_down(hidden_states)
up_hidden_states = self.lora_up(down_hidden_states)
return up_hidden_states
class LoRACrossAttnProcessor(nn.Module):
def __init__(self, hidden_size, cross_attention_dim=None, rank=4):
super().__init__()
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size)
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class LoRAXFormersCrossAttnProcessor(nn.Module):
def __init__(self, hidden_size, cross_attention_dim, rank=4):
super().__init__()
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size)
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size)
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
query = attn.head_to_batch_dim(query).contiguous()
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
# linear proj
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
|