summaryrefslogtreecommitdiffstats
path: root/training/optimization.py
blob: c501ed9a9ad9030bb5338241c55a4981022db141 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import math
from torch.optim.lr_scheduler import LambdaLR

from diffusers.utils import logging

logger = logging.get_logger(__name__)


def get_one_cycle_schedule(optimizer, num_training_steps, annealing="cos", min_lr=0.001, mid_point=0.4, last_epoch=-1):
    """
    Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
    a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.
    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    def lr_lambda(current_step: int):
        thresh_up = int(num_training_steps * min(mid_point, 0.5))

        if current_step < thresh_up:
            return min_lr + float(current_step) / float(max(1, thresh_up)) * (1 - min_lr)

        if annealing == "linear":
            thresh_down = thresh_up * 2

            if current_step < thresh_down:
                return min_lr + float(thresh_down - current_step) / float(max(1, thresh_down - thresh_up)) * (1 - min_lr)

            progress = float(num_training_steps - current_step) / float(max(1, num_training_steps - thresh_down))
            return max(0.0, progress) * min_lr
        else:
            progress = float(current_step - thresh_up) / float(max(1, num_training_steps - thresh_up))
            return max(0.0, 1.0 + math.cos(math.pi * (0.5 + 0.5 * progress)))

    return LambdaLR(optimizer, lr_lambda, last_epoch)