1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
from typing import Optional
from functools import partial
from contextlib import contextmanager, nullcontext
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from accelerate import Accelerator
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from slugify import slugify
from models.clip.tokenizer import MultiCLIPTokenizer
from training.util import EMAModel
from training.functional import TrainingStrategy, TrainingCallbacks, save_samples
def textual_inversion_strategy_callbacks(
accelerator: Accelerator,
unet: UNet2DConditionModel,
text_encoder: CLIPTextModel,
tokenizer: MultiCLIPTokenizer,
vae: AutoencoderKL,
sample_scheduler: DPMSolverMultistepScheduler,
train_dataloader: DataLoader,
val_dataloader: Optional[DataLoader],
sample_output_dir: Path,
checkpoint_output_dir: Path,
seed: int,
placeholder_tokens: list[str],
placeholder_token_ids: list[list[int]],
gradient_checkpointing: bool = False,
use_emb_decay: bool = False,
emb_decay_target: float = 0.4,
emb_decay: float = 1e-2,
use_ema: bool = False,
ema_inv_gamma: float = 1.0,
ema_power: int = 1,
ema_max_decay: float = 0.9999,
sample_batch_size: int = 1,
sample_num_batches: int = 1,
sample_num_steps: int = 20,
sample_guidance_scale: float = 7.5,
sample_image_size: Optional[int] = None,
):
sample_output_dir.mkdir(parents=True, exist_ok=True)
checkpoint_output_dir.mkdir(parents=True, exist_ok=True)
weight_dtype = torch.float32
if accelerator.state.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.state.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
save_samples_ = partial(
save_samples,
accelerator=accelerator,
tokenizer=tokenizer,
vae=vae,
sample_scheduler=sample_scheduler,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
output_dir=sample_output_dir,
seed=seed,
batch_size=sample_batch_size,
num_batches=sample_num_batches,
num_steps=sample_num_steps,
guidance_scale=sample_guidance_scale,
image_size=sample_image_size,
)
if use_ema:
ema_embeddings = EMAModel(
text_encoder.text_model.embeddings.temp_token_embedding.parameters(),
inv_gamma=ema_inv_gamma,
power=ema_power,
max_value=ema_max_decay,
)
ema_embeddings.to(accelerator.device)
else:
ema_embeddings = None
def ema_context():
if ema_embeddings is not None:
return ema_embeddings.apply_temporary(
text_encoder.text_model.embeddings.temp_token_embedding.parameters()
)
else:
return nullcontext()
def on_accum_model():
return text_encoder.text_model.embeddings.temp_token_embedding
@contextmanager
def on_train(epoch: int):
tokenizer.train()
yield
@contextmanager
def on_eval():
tokenizer.eval()
with ema_context():
yield
@torch.no_grad()
def on_before_optimize(lr: float, epoch: int):
if use_emb_decay:
w = text_encoder.text_model.embeddings.temp_token_embedding.weight
return torch.all(w.grad == 0, dim=1)
@torch.no_grad()
def on_after_optimize(zero_ids, lr: float):
if ema_embeddings is not None:
ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters())
if use_emb_decay:
lambda_ = emb_decay * lr
if lambda_ != 0:
w = text_encoder.text_model.embeddings.temp_token_embedding.weight
mask = torch.ones(w.shape[0], dtype=torch.bool)
mask[zero_ids] = False
norm = w[mask, :].norm(dim=-1, keepdim=True)
w[mask].add_((w[mask] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm))
def on_log():
if ema_embeddings is not None:
return {"ema_decay": ema_embeddings.decay}
return {}
@torch.no_grad()
def on_checkpoint(step, postfix):
print(f"Saving checkpoint for step {step}...")
with ema_context():
for (token, ids) in zip(placeholder_tokens, placeholder_token_ids):
text_encoder.text_model.embeddings.save_embed(
ids,
checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin"
)
@torch.no_grad()
def on_sample(step):
with ema_context():
unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
orig_unet_dtype = unet_.dtype
orig_text_encoder_dtype = text_encoder_.dtype
unet_.to(dtype=weight_dtype)
text_encoder_.to(dtype=weight_dtype)
save_samples_(step=step, unet=unet_, text_encoder=text_encoder_)
unet_.to(dtype=orig_unet_dtype)
text_encoder_.to(dtype=orig_text_encoder_dtype)
del unet_
del text_encoder_
if torch.cuda.is_available():
torch.cuda.empty_cache()
return TrainingCallbacks(
on_accum_model=on_accum_model,
on_train=on_train,
on_eval=on_eval,
on_before_optimize=on_before_optimize,
on_after_optimize=on_after_optimize,
on_log=on_log,
on_checkpoint=on_checkpoint,
on_sample=on_sample,
)
def textual_inversion_prepare(
accelerator: Accelerator,
text_encoder: CLIPTextModel,
unet: UNet2DConditionModel,
optimizer: torch.optim.Optimizer,
train_dataloader: DataLoader,
val_dataloader: Optional[DataLoader],
lr_scheduler: torch.optim.lr_scheduler._LRScheduler,
gradient_checkpointing: bool = False,
**kwargs
):
weight_dtype = torch.float32
if accelerator.state.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.state.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler)
unet.to(accelerator.device, dtype=weight_dtype)
unet.requires_grad_(False)
unet.eval()
if gradient_checkpointing:
unet.train()
text_encoder.text_model.encoder.requires_grad_(False)
text_encoder.text_model.final_layer_norm.requires_grad_(False)
text_encoder.eval()
return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {}
textual_inversion_strategy = TrainingStrategy(
callbacks=textual_inversion_strategy_callbacks,
prepare=textual_inversion_prepare,
)
|