1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
from pathlib import Path
import json
from typing import Iterable
import torch
from PIL import Image
def save_args(basepath: Path, args, extra={}):
info = {"args": vars(args)}
info["args"].update(extra)
with open(basepath.joinpath("args.json"), "w") as f:
json.dump(info, f, indent=4)
def make_grid(images, rows, cols):
w, h = images[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, image in enumerate(images):
grid.paste(image, box=(i % cols*w, i//cols*h))
return grid
class AverageMeter:
def __init__(self, name=None):
self.name = name
self.reset()
def reset(self):
self.sum = self.count = self.avg = 0
def update(self, val, n=1):
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class CheckpointerBase:
def __init__(
self,
datamodule,
output_dir: Path,
sample_image_size,
sample_batches,
sample_batch_size,
seed
):
self.datamodule = datamodule
self.output_dir = output_dir
self.sample_image_size = sample_image_size
self.seed = seed or torch.random.seed()
self.sample_batches = sample_batches
self.sample_batch_size = sample_batch_size
@torch.inference_mode()
def save_samples(self, pipeline, step, num_inference_steps, guidance_scale=7.5, eta=0.0):
samples_path = Path(self.output_dir).joinpath("samples")
train_data = self.datamodule.train_dataloader()
val_data = self.datamodule.val_dataloader()
generator = torch.Generator(device=pipeline.device).manual_seed(self.seed)
grid_cols = min(self.sample_batch_size, 4)
grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols
for pool, data, gen in [("stable", val_data, generator), ("val", val_data, None), ("train", train_data, None)]:
all_samples = []
file_path = samples_path.joinpath(pool, f"step_{step}.jpg")
file_path.parent.mkdir(parents=True, exist_ok=True)
data_enum = enumerate(data)
batches = [
batch
for j, batch in data_enum
if j * data.batch_size < self.sample_batch_size * self.sample_batches
]
prompts = [
prompt
for batch in batches
for prompt in batch["prompts"]
]
nprompts = [
prompt
for batch in batches
for prompt in batch["nprompts"]
]
for i in range(self.sample_batches):
prompt = prompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size]
nprompt = nprompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size]
samples = pipeline(
prompt=prompt,
negative_prompt=nprompt,
height=self.sample_image_size,
width=self.sample_image_size,
generator=gen,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type='pil'
).images
all_samples += samples
del samples
image_grid = make_grid(all_samples, grid_rows, grid_cols)
image_grid.save(file_path, quality=85)
del all_samples
del image_grid
del generator
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
parameters = list(parameters)
self.shadow_params = [p.clone().detach() for p in parameters]
self.decay = decay
self.optimization_step = 0
@torch.no_grad()
def step(self, parameters):
parameters = list(parameters)
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
value = (1 + self.optimization_step) / (10 + self.optimization_step)
one_minus_decay = 1 - min(self.decay, value)
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param))
else:
s_param.copy_(param)
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
|