diff options
author | Volpeon <git@volpeon.ink> | 2022-10-04 19:22:22 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-10-04 19:22:22 +0200 |
commit | 300deaa789a0321f32d5e7f04d9860eaa258110e (patch) | |
tree | 892e89753e5c4d86d787131595751bc03c610be8 | |
parent | Default sample steps 30 -> 40 (diff) | |
download | textual-inversion-diff-300deaa789a0321f32d5e7f04d9860eaa258110e.tar.gz textual-inversion-diff-300deaa789a0321f32d5e7f04d9860eaa258110e.tar.bz2 textual-inversion-diff-300deaa789a0321f32d5e7f04d9860eaa258110e.zip |
Add Textual Inversion with class dataset (a la Dreambooth)
-rw-r--r-- | data/dreambooth/csv.py | 11 | ||||
-rw-r--r-- | data/dreambooth/prompt.py | 18 | ||||
-rw-r--r-- | dreambooth.py | 25 | ||||
-rw-r--r-- | textual_dreambooth.py | 948 | ||||
-rw-r--r-- | textual_inversion.py | 13 |
5 files changed, 968 insertions, 47 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py index 9075979..abd329d 100644 --- a/data/dreambooth/csv.py +++ b/data/dreambooth/csv.py | |||
@@ -15,6 +15,7 @@ class CSVDataModule(pl.LightningDataModule): | |||
15 | tokenizer, | 15 | tokenizer, |
16 | instance_identifier, | 16 | instance_identifier, |
17 | class_identifier=None, | 17 | class_identifier=None, |
18 | class_subdir="db_cls", | ||
18 | size=512, | 19 | size=512, |
19 | repeats=100, | 20 | repeats=100, |
20 | interpolation="bicubic", | 21 | interpolation="bicubic", |
@@ -30,7 +31,7 @@ class CSVDataModule(pl.LightningDataModule): | |||
30 | raise ValueError("data_file must be a file") | 31 | raise ValueError("data_file must be a file") |
31 | 32 | ||
32 | self.data_root = self.data_file.parent | 33 | self.data_root = self.data_file.parent |
33 | self.class_root = self.data_root.joinpath("db_cls") | 34 | self.class_root = self.data_root.joinpath(class_subdir) |
34 | self.class_root.mkdir(parents=True, exist_ok=True) | 35 | self.class_root.mkdir(parents=True, exist_ok=True) |
35 | 36 | ||
36 | self.tokenizer = tokenizer | 37 | self.tokenizer = tokenizer |
@@ -140,11 +141,9 @@ class CSVDataset(Dataset): | |||
140 | if not instance_image.mode == "RGB": | 141 | if not instance_image.mode == "RGB": |
141 | instance_image = instance_image.convert("RGB") | 142 | instance_image = instance_image.convert("RGB") |
142 | 143 | ||
143 | instance_prompt = prompt.format(self.instance_identifier) | ||
144 | |||
145 | example["instance_images"] = instance_image | 144 | example["instance_images"] = instance_image |
146 | example["instance_prompt_ids"] = self.tokenizer( | 145 | example["instance_prompt_ids"] = self.tokenizer( |
147 | instance_prompt, | 146 | prompt.format(self.instance_identifier), |
148 | padding="do_not_pad", | 147 | padding="do_not_pad", |
149 | truncation=True, | 148 | truncation=True, |
150 | max_length=self.tokenizer.model_max_length, | 149 | max_length=self.tokenizer.model_max_length, |
@@ -155,11 +154,9 @@ class CSVDataset(Dataset): | |||
155 | if not class_image.mode == "RGB": | 154 | if not class_image.mode == "RGB": |
156 | class_image = class_image.convert("RGB") | 155 | class_image = class_image.convert("RGB") |
157 | 156 | ||
158 | class_prompt = prompt.format(self.class_identifier) | ||
159 | |||
160 | example["class_images"] = class_image | 157 | example["class_images"] = class_image |
161 | example["class_prompt_ids"] = self.tokenizer( | 158 | example["class_prompt_ids"] = self.tokenizer( |
162 | class_prompt, | 159 | prompt.format(self.class_identifier), |
163 | padding="do_not_pad", | 160 | padding="do_not_pad", |
164 | truncation=True, | 161 | truncation=True, |
165 | max_length=self.tokenizer.model_max_length, | 162 | max_length=self.tokenizer.model_max_length, |
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py deleted file mode 100644 index b3a83ce..0000000 --- a/data/dreambooth/prompt.py +++ /dev/null | |||
@@ -1,18 +0,0 @@ | |||
1 | from torch.utils.data import Dataset | ||
2 | |||
3 | |||
4 | class PromptDataset(Dataset): | ||
5 | def __init__(self, prompt, nprompt, num_samples): | ||
6 | self.prompt = prompt | ||
7 | self.nprompt = nprompt | ||
8 | self.num_samples = num_samples | ||
9 | |||
10 | def __len__(self): | ||
11 | return self.num_samples | ||
12 | |||
13 | def __getitem__(self, index): | ||
14 | example = {} | ||
15 | example["prompt"] = self.prompt | ||
16 | example["nprompt"] = self.nprompt | ||
17 | example["index"] = index | ||
18 | return example | ||
diff --git a/dreambooth.py b/dreambooth.py index aedf25c..0c5c42a 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -24,7 +24,6 @@ from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | |||
24 | import json | 24 | import json |
25 | 25 | ||
26 | from data.dreambooth.csv import CSVDataModule | 26 | from data.dreambooth.csv import CSVDataModule |
27 | from data.dreambooth.prompt import PromptDataset | ||
28 | 27 | ||
29 | logger = get_logger(__name__) | 28 | logger = get_logger(__name__) |
30 | 29 | ||
@@ -122,7 +121,7 @@ def parse_args(): | |||
122 | parser.add_argument( | 121 | parser.add_argument( |
123 | "--learning_rate", | 122 | "--learning_rate", |
124 | type=float, | 123 | type=float, |
125 | default=3e-6, | 124 | default=1e-6, |
126 | help="Initial learning rate (after the potential warmup period) to use.", | 125 | help="Initial learning rate (after the potential warmup period) to use.", |
127 | ) | 126 | ) |
128 | parser.add_argument( | 127 | parser.add_argument( |
@@ -219,17 +218,10 @@ def parse_args(): | |||
219 | parser.add_argument( | 218 | parser.add_argument( |
220 | "--sample_steps", | 219 | "--sample_steps", |
221 | type=int, | 220 | type=int, |
222 | default=40, | 221 | default=30, |
223 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | 222 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", |
224 | ) | 223 | ) |
225 | parser.add_argument( | 224 | parser.add_argument( |
226 | "--class_data_dir", | ||
227 | type=str, | ||
228 | default=None, | ||
229 | required=False, | ||
230 | help="A folder containing the training data of class images.", | ||
231 | ) | ||
232 | parser.add_argument( | ||
233 | "--prior_loss_weight", | 225 | "--prior_loss_weight", |
234 | type=float, | 226 | type=float, |
235 | default=1.0, | 227 | default=1.0, |
@@ -311,7 +303,7 @@ class Checkpointer: | |||
311 | self.output_dir = output_dir | 303 | self.output_dir = output_dir |
312 | self.instance_identifier = instance_identifier | 304 | self.instance_identifier = instance_identifier |
313 | self.sample_image_size = sample_image_size | 305 | self.sample_image_size = sample_image_size |
314 | self.seed = seed | 306 | self.seed = seed or torch.random.seed() |
315 | self.sample_batches = sample_batches | 307 | self.sample_batches = sample_batches |
316 | self.sample_batch_size = sample_batch_size | 308 | self.sample_batch_size = sample_batch_size |
317 | 309 | ||
@@ -406,6 +398,8 @@ class Checkpointer: | |||
406 | del unwrapped | 398 | del unwrapped |
407 | del scheduler | 399 | del scheduler |
408 | del pipeline | 400 | del pipeline |
401 | del generator | ||
402 | del stable_latents | ||
409 | 403 | ||
410 | if torch.cuda.is_available(): | 404 | if torch.cuda.is_available(): |
411 | torch.cuda.empty_cache() | 405 | torch.cuda.empty_cache() |
@@ -523,11 +517,13 @@ def main(): | |||
523 | tokenizer=tokenizer, | 517 | tokenizer=tokenizer, |
524 | instance_identifier=args.instance_identifier, | 518 | instance_identifier=args.instance_identifier, |
525 | class_identifier=args.class_identifier, | 519 | class_identifier=args.class_identifier, |
520 | class_subdir="db_cls", | ||
526 | size=args.resolution, | 521 | size=args.resolution, |
527 | repeats=args.repeats, | 522 | repeats=args.repeats, |
528 | center_crop=args.center_crop, | 523 | center_crop=args.center_crop, |
529 | valid_set_size=args.sample_batch_size*args.sample_batches, | 524 | valid_set_size=args.sample_batch_size*args.sample_batches, |
530 | collate_fn=collate_fn) | 525 | collate_fn=collate_fn |
526 | ) | ||
531 | 527 | ||
532 | datamodule.prepare_data() | 528 | datamodule.prepare_data() |
533 | datamodule.setup() | 529 | datamodule.setup() |
@@ -587,7 +583,7 @@ def main(): | |||
587 | sample_image_size=args.sample_image_size, | 583 | sample_image_size=args.sample_image_size, |
588 | sample_batch_size=args.sample_batch_size, | 584 | sample_batch_size=args.sample_batch_size, |
589 | sample_batches=args.sample_batches, | 585 | sample_batches=args.sample_batches, |
590 | seed=args.seed or torch.random.seed() | 586 | seed=args.seed |
591 | ) | 587 | ) |
592 | 588 | ||
593 | # Scheduler and math around the number of training steps. | 589 | # Scheduler and math around the number of training steps. |
@@ -699,8 +695,7 @@ def main(): | |||
699 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | 695 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
700 | 696 | ||
701 | # Compute prior loss | 697 | # Compute prior loss |
702 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, | 698 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() |
703 | reduction="none").mean([1, 2, 3]).mean() | ||
704 | 699 | ||
705 | # Add the prior loss to the instance loss. | 700 | # Add the prior loss to the instance loss. |
706 | loss = loss + args.prior_loss_weight * prior_loss | 701 | loss = loss + args.prior_loss_weight * prior_loss |
diff --git a/textual_dreambooth.py b/textual_dreambooth.py new file mode 100644 index 0000000..a46953d --- /dev/null +++ b/textual_dreambooth.py | |||
@@ -0,0 +1,948 @@ | |||
1 | import argparse | ||
2 | import itertools | ||
3 | import math | ||
4 | import os | ||
5 | import datetime | ||
6 | import logging | ||
7 | from pathlib import Path | ||
8 | |||
9 | import numpy as np | ||
10 | import torch | ||
11 | import torch.nn.functional as F | ||
12 | import torch.utils.checkpoint | ||
13 | |||
14 | from accelerate import Accelerator | ||
15 | from accelerate.logging import get_logger | ||
16 | from accelerate.utils import LoggerType, set_seed | ||
17 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | ||
18 | from schedulers.scheduling_euler_a import EulerAScheduler | ||
19 | from diffusers.optimization import get_scheduler | ||
20 | from PIL import Image | ||
21 | from tqdm.auto import tqdm | ||
22 | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | ||
23 | from slugify import slugify | ||
24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
25 | import json | ||
26 | import os | ||
27 | |||
28 | from data.dreambooth.csv import CSVDataModule | ||
29 | |||
30 | logger = get_logger(__name__) | ||
31 | |||
32 | |||
33 | torch.backends.cuda.matmul.allow_tf32 = True | ||
34 | |||
35 | |||
36 | def parse_args(): | ||
37 | parser = argparse.ArgumentParser( | ||
38 | description="Simple example of a training script." | ||
39 | ) | ||
40 | parser.add_argument( | ||
41 | "--pretrained_model_name_or_path", | ||
42 | type=str, | ||
43 | default=None, | ||
44 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
45 | ) | ||
46 | parser.add_argument( | ||
47 | "--tokenizer_name", | ||
48 | type=str, | ||
49 | default=None, | ||
50 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
51 | ) | ||
52 | parser.add_argument( | ||
53 | "--train_data_file", | ||
54 | type=str, | ||
55 | default=None, | ||
56 | help="A CSV file containing the training data." | ||
57 | ) | ||
58 | parser.add_argument( | ||
59 | "--placeholder_token", | ||
60 | type=str, | ||
61 | default=None, | ||
62 | help="A token to use as a placeholder for the concept.", | ||
63 | ) | ||
64 | parser.add_argument( | ||
65 | "--initializer_token", | ||
66 | type=str, | ||
67 | default=None, | ||
68 | help="A token to use as initializer word." | ||
69 | ) | ||
70 | parser.add_argument( | ||
71 | "--num_vec_per_token", | ||
72 | type=int, | ||
73 | default=1, | ||
74 | help=( | ||
75 | "The number of vectors used to represent the placeholder token. The higher the number, the better the" | ||
76 | " result at the cost of editability. This can be fixed by prompt editing." | ||
77 | ), | ||
78 | ) | ||
79 | parser.add_argument( | ||
80 | "--initialize_rest_random", | ||
81 | action="store_true", | ||
82 | help="Initialize rest of the placeholder tokens with random." | ||
83 | ) | ||
84 | parser.add_argument( | ||
85 | "--use_class_images", | ||
86 | action="store_true", | ||
87 | default=True, | ||
88 | help="Include class images in the loss calculation a la Dreambooth.", | ||
89 | ) | ||
90 | parser.add_argument( | ||
91 | "--repeats", | ||
92 | type=int, | ||
93 | default=100, | ||
94 | help="How many times to repeat the training data.") | ||
95 | parser.add_argument( | ||
96 | "--output_dir", | ||
97 | type=str, | ||
98 | default="output/text-inversion", | ||
99 | help="The output directory where the model predictions and checkpoints will be written.", | ||
100 | ) | ||
101 | parser.add_argument( | ||
102 | "--seed", | ||
103 | type=int, | ||
104 | default=None, | ||
105 | help="A seed for reproducible training.") | ||
106 | parser.add_argument( | ||
107 | "--resolution", | ||
108 | type=int, | ||
109 | default=512, | ||
110 | help=( | ||
111 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
112 | " resolution" | ||
113 | ), | ||
114 | ) | ||
115 | parser.add_argument( | ||
116 | "--center_crop", | ||
117 | action="store_true", | ||
118 | help="Whether to center crop images before resizing to resolution" | ||
119 | ) | ||
120 | parser.add_argument( | ||
121 | "--num_train_epochs", | ||
122 | type=int, | ||
123 | default=100) | ||
124 | parser.add_argument( | ||
125 | "--max_train_steps", | ||
126 | type=int, | ||
127 | default=5000, | ||
128 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
129 | ) | ||
130 | parser.add_argument( | ||
131 | "--gradient_accumulation_steps", | ||
132 | type=int, | ||
133 | default=1, | ||
134 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
135 | ) | ||
136 | parser.add_argument( | ||
137 | "--gradient_checkpointing", | ||
138 | action="store_true", | ||
139 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
140 | ) | ||
141 | parser.add_argument( | ||
142 | "--learning_rate", | ||
143 | type=float, | ||
144 | default=1e-4, | ||
145 | help="Initial learning rate (after the potential warmup period) to use.", | ||
146 | ) | ||
147 | parser.add_argument( | ||
148 | "--scale_lr", | ||
149 | action="store_true", | ||
150 | default=True, | ||
151 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
152 | ) | ||
153 | parser.add_argument( | ||
154 | "--lr_scheduler", | ||
155 | type=str, | ||
156 | default="constant", | ||
157 | help=( | ||
158 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
159 | ' "constant", "constant_with_warmup"]' | ||
160 | ), | ||
161 | ) | ||
162 | parser.add_argument( | ||
163 | "--lr_warmup_steps", | ||
164 | type=int, | ||
165 | default=500, | ||
166 | help="Number of steps for the warmup in the lr scheduler." | ||
167 | ) | ||
168 | parser.add_argument( | ||
169 | "--use_8bit_adam", | ||
170 | action="store_true", | ||
171 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
172 | ) | ||
173 | parser.add_argument( | ||
174 | "--adam_beta1", | ||
175 | type=float, | ||
176 | default=0.9, | ||
177 | help="The beta1 parameter for the Adam optimizer." | ||
178 | ) | ||
179 | parser.add_argument( | ||
180 | "--adam_beta2", | ||
181 | type=float, | ||
182 | default=0.999, | ||
183 | help="The beta2 parameter for the Adam optimizer." | ||
184 | ) | ||
185 | parser.add_argument( | ||
186 | "--adam_weight_decay", | ||
187 | type=float, | ||
188 | default=1e-2, | ||
189 | help="Weight decay to use." | ||
190 | ) | ||
191 | parser.add_argument( | ||
192 | "--adam_epsilon", | ||
193 | type=float, | ||
194 | default=1e-08, | ||
195 | help="Epsilon value for the Adam optimizer" | ||
196 | ) | ||
197 | parser.add_argument( | ||
198 | "--mixed_precision", | ||
199 | type=str, | ||
200 | default="no", | ||
201 | choices=["no", "fp16", "bf16"], | ||
202 | help=( | ||
203 | "Whether to use mixed precision. Choose" | ||
204 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
205 | "and an Nvidia Ampere GPU." | ||
206 | ), | ||
207 | ) | ||
208 | parser.add_argument( | ||
209 | "--local_rank", | ||
210 | type=int, | ||
211 | default=-1, | ||
212 | help="For distributed training: local_rank" | ||
213 | ) | ||
214 | parser.add_argument( | ||
215 | "--checkpoint_frequency", | ||
216 | type=int, | ||
217 | default=500, | ||
218 | help="How often to save a checkpoint and sample image", | ||
219 | ) | ||
220 | parser.add_argument( | ||
221 | "--sample_image_size", | ||
222 | type=int, | ||
223 | default=512, | ||
224 | help="Size of sample images", | ||
225 | ) | ||
226 | parser.add_argument( | ||
227 | "--sample_batches", | ||
228 | type=int, | ||
229 | default=1, | ||
230 | help="Number of sample batches to generate per checkpoint", | ||
231 | ) | ||
232 | parser.add_argument( | ||
233 | "--sample_batch_size", | ||
234 | type=int, | ||
235 | default=1, | ||
236 | help="Number of samples to generate per batch", | ||
237 | ) | ||
238 | parser.add_argument( | ||
239 | "--train_batch_size", | ||
240 | type=int, | ||
241 | default=1, | ||
242 | help="Batch size (per device) for the training dataloader." | ||
243 | ) | ||
244 | parser.add_argument( | ||
245 | "--sample_steps", | ||
246 | type=int, | ||
247 | default=30, | ||
248 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
249 | ) | ||
250 | parser.add_argument( | ||
251 | "--prior_loss_weight", | ||
252 | type=float, | ||
253 | default=1.0, | ||
254 | help="The weight of prior preservation loss." | ||
255 | ) | ||
256 | parser.add_argument( | ||
257 | "--resume_from", | ||
258 | type=str, | ||
259 | default=None, | ||
260 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" | ||
261 | ) | ||
262 | parser.add_argument( | ||
263 | "--resume_checkpoint", | ||
264 | type=str, | ||
265 | default=None, | ||
266 | help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)." | ||
267 | ) | ||
268 | parser.add_argument( | ||
269 | "--config", | ||
270 | type=str, | ||
271 | default=None, | ||
272 | help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this." | ||
273 | ) | ||
274 | |||
275 | args = parser.parse_args() | ||
276 | if args.resume_from is not None: | ||
277 | with open(f"{args.resume_from}/resume.json", 'rt') as f: | ||
278 | args = parser.parse_args( | ||
279 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
280 | elif args.config is not None: | ||
281 | with open(args.config, 'rt') as f: | ||
282 | args = parser.parse_args( | ||
283 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
284 | |||
285 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
286 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
287 | args.local_rank = env_local_rank | ||
288 | |||
289 | if args.train_data_file is None: | ||
290 | raise ValueError("You must specify --train_data_file") | ||
291 | |||
292 | if args.pretrained_model_name_or_path is None: | ||
293 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
294 | |||
295 | if args.placeholder_token is None: | ||
296 | raise ValueError("You must specify --placeholder_token") | ||
297 | |||
298 | if args.initializer_token is None: | ||
299 | raise ValueError("You must specify --initializer_token") | ||
300 | |||
301 | if args.output_dir is None: | ||
302 | raise ValueError("You must specify --output_dir") | ||
303 | |||
304 | return args | ||
305 | |||
306 | |||
307 | def freeze_params(params): | ||
308 | for param in params: | ||
309 | param.requires_grad = False | ||
310 | |||
311 | |||
312 | def save_resume_file(basepath, args, extra={}): | ||
313 | info = {"args": vars(args)} | ||
314 | info["args"].update(extra) | ||
315 | with open(f"{basepath}/resume.json", "w") as f: | ||
316 | json.dump(info, f, indent=4) | ||
317 | |||
318 | |||
319 | def make_grid(images, rows, cols): | ||
320 | w, h = images[0].size | ||
321 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
322 | for i, image in enumerate(images): | ||
323 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
324 | return grid | ||
325 | |||
326 | |||
327 | def add_tokens_and_get_placeholder_token(args, token_ids, tokenizer, text_encoder): | ||
328 | assert args.num_vec_per_token >= len(token_ids) | ||
329 | placeholder_tokens = [f"{args.placeholder_token}_{i}" for i in range(args.num_vec_per_token)] | ||
330 | |||
331 | for placeholder_token in placeholder_tokens: | ||
332 | num_added_tokens = tokenizer.add_tokens(placeholder_token) | ||
333 | if num_added_tokens == 0: | ||
334 | raise ValueError( | ||
335 | f"The tokenizer already contains the token {placeholder_token}. Please pass a different" | ||
336 | " `placeholder_token` that is not already in the tokenizer." | ||
337 | ) | ||
338 | |||
339 | placeholder_token = " ".join(placeholder_tokens) | ||
340 | placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) | ||
341 | |||
342 | print(f"The placeholder tokens are {placeholder_token} while the ids are {placeholder_token_ids}") | ||
343 | |||
344 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
345 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
346 | |||
347 | if args.initialize_rest_random: | ||
348 | # The idea is that the placeholder tokens form adjectives as in x x x white dog. | ||
349 | for i, placeholder_token_id in enumerate(placeholder_token_ids): | ||
350 | if len(placeholder_token_ids) - i < len(token_ids): | ||
351 | token_embeds[placeholder_token_id] = token_embeds[token_ids[i % len(token_ids)]] | ||
352 | else: | ||
353 | token_embeds[placeholder_token_id] = torch.rand_like(token_embeds[placeholder_token_id]) | ||
354 | else: | ||
355 | for i, placeholder_token_id in enumerate(placeholder_token_ids): | ||
356 | token_embeds[placeholder_token_id] = token_embeds[token_ids[i % len(token_ids)]] | ||
357 | |||
358 | return placeholder_token, placeholder_token_ids | ||
359 | |||
360 | |||
361 | class Checkpointer: | ||
362 | def __init__( | ||
363 | self, | ||
364 | datamodule, | ||
365 | accelerator, | ||
366 | vae, | ||
367 | unet, | ||
368 | tokenizer, | ||
369 | placeholder_token, | ||
370 | placeholder_token_ids, | ||
371 | output_dir, | ||
372 | sample_image_size, | ||
373 | sample_batches, | ||
374 | sample_batch_size, | ||
375 | seed | ||
376 | ): | ||
377 | self.datamodule = datamodule | ||
378 | self.accelerator = accelerator | ||
379 | self.vae = vae | ||
380 | self.unet = unet | ||
381 | self.tokenizer = tokenizer | ||
382 | self.placeholder_token = placeholder_token | ||
383 | self.placeholder_token_ids = placeholder_token_ids | ||
384 | self.output_dir = output_dir | ||
385 | self.sample_image_size = sample_image_size | ||
386 | self.seed = seed or torch.random.seed() | ||
387 | self.sample_batches = sample_batches | ||
388 | self.sample_batch_size = sample_batch_size | ||
389 | |||
390 | @torch.no_grad() | ||
391 | def checkpoint(self, step, postfix, text_encoder, save_samples=True, path=None): | ||
392 | print("Saving checkpoint for step %d..." % step) | ||
393 | |||
394 | if path is None: | ||
395 | checkpoints_path = f"{self.output_dir}/checkpoints" | ||
396 | os.makedirs(checkpoints_path, exist_ok=True) | ||
397 | |||
398 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
399 | |||
400 | # Save a checkpoint | ||
401 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_ids] | ||
402 | learned_embeds_dict = {} | ||
403 | for i, placeholder_token in enumerate(self.placeholder_token.split(" ")): | ||
404 | learned_embeds_dict[placeholder_token] = learned_embeds[i].detach().cpu() | ||
405 | |||
406 | filename = f"%s_%d_%s.bin" % (slugify(self.placeholder_token), step, postfix) | ||
407 | if path is not None: | ||
408 | torch.save(learned_embeds_dict, path) | ||
409 | else: | ||
410 | torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}") | ||
411 | torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin") | ||
412 | |||
413 | del unwrapped | ||
414 | del learned_embeds | ||
415 | |||
416 | @torch.no_grad() | ||
417 | def save_samples(self, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps): | ||
418 | samples_path = Path(self.output_dir).joinpath("samples") | ||
419 | |||
420 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
421 | scheduler = EulerAScheduler( | ||
422 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
423 | ) | ||
424 | |||
425 | # Save a sample image | ||
426 | pipeline = VlpnStableDiffusion( | ||
427 | text_encoder=unwrapped, | ||
428 | vae=self.vae, | ||
429 | unet=self.unet, | ||
430 | tokenizer=self.tokenizer, | ||
431 | scheduler=scheduler, | ||
432 | ).to(self.accelerator.device) | ||
433 | pipeline.enable_attention_slicing() | ||
434 | |||
435 | train_data = self.datamodule.train_dataloader() | ||
436 | val_data = self.datamodule.val_dataloader() | ||
437 | |||
438 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
439 | stable_latents = torch.randn( | ||
440 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
441 | device=pipeline.device, | ||
442 | generator=generator, | ||
443 | ) | ||
444 | |||
445 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
446 | all_samples = [] | ||
447 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | ||
448 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
449 | |||
450 | data_enum = enumerate(data) | ||
451 | |||
452 | for i in range(self.sample_batches): | ||
453 | batches = [batch for j, batch in data_enum if j * data.batch_size < self.sample_batch_size] | ||
454 | prompt = [prompt.format(self.placeholder_token) | ||
455 | for batch in batches for prompt in batch["prompts"]][:self.sample_batch_size] | ||
456 | nprompt = [prompt for batch in batches for prompt in batch["nprompts"]][:self.sample_batch_size] | ||
457 | |||
458 | with self.accelerator.autocast(): | ||
459 | samples = pipeline( | ||
460 | prompt=prompt, | ||
461 | negative_prompt=nprompt, | ||
462 | height=self.sample_image_size, | ||
463 | width=self.sample_image_size, | ||
464 | latents=latents[:len(prompt)] if latents is not None else None, | ||
465 | generator=generator if latents is not None else None, | ||
466 | guidance_scale=guidance_scale, | ||
467 | eta=eta, | ||
468 | num_inference_steps=num_inference_steps, | ||
469 | output_type='pil' | ||
470 | )["sample"] | ||
471 | |||
472 | all_samples += samples | ||
473 | |||
474 | del samples | ||
475 | |||
476 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
477 | image_grid.save(file_path) | ||
478 | |||
479 | del all_samples | ||
480 | del image_grid | ||
481 | |||
482 | del unwrapped | ||
483 | del scheduler | ||
484 | del pipeline | ||
485 | del generator | ||
486 | del stable_latents | ||
487 | |||
488 | if torch.cuda.is_available(): | ||
489 | torch.cuda.empty_cache() | ||
490 | |||
491 | |||
492 | def main(): | ||
493 | args = parse_args() | ||
494 | |||
495 | global_step_offset = 0 | ||
496 | if args.resume_from is not None: | ||
497 | basepath = Path(args.resume_from) | ||
498 | print("Resuming state from %s" % args.resume_from) | ||
499 | with open(basepath.joinpath("resume.json"), 'r') as f: | ||
500 | state = json.load(f) | ||
501 | global_step_offset = state["args"].get("global_step", 0) | ||
502 | |||
503 | print("We've trained %d steps so far" % global_step_offset) | ||
504 | else: | ||
505 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
506 | basepath = Path(args.output_dir).joinpath(slugify(args.placeholder_token), now) | ||
507 | basepath.mkdir(parents=True, exist_ok=True) | ||
508 | |||
509 | accelerator = Accelerator( | ||
510 | log_with=LoggerType.TENSORBOARD, | ||
511 | logging_dir=f"{basepath}", | ||
512 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
513 | mixed_precision=args.mixed_precision | ||
514 | ) | ||
515 | |||
516 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
517 | |||
518 | # If passed along, set the training seed now. | ||
519 | if args.seed is not None: | ||
520 | set_seed(args.seed) | ||
521 | |||
522 | # Load the tokenizer and add the placeholder token as a additional special token | ||
523 | if args.tokenizer_name: | ||
524 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
525 | elif args.pretrained_model_name_or_path: | ||
526 | tokenizer = CLIPTokenizer.from_pretrained( | ||
527 | args.pretrained_model_name_or_path + '/tokenizer' | ||
528 | ) | ||
529 | |||
530 | # Load models and create wrapper for stable diffusion | ||
531 | text_encoder = CLIPTextModel.from_pretrained( | ||
532 | args.pretrained_model_name_or_path + '/text_encoder', | ||
533 | ) | ||
534 | vae = AutoencoderKL.from_pretrained( | ||
535 | args.pretrained_model_name_or_path + '/vae', | ||
536 | ) | ||
537 | unet = UNet2DConditionModel.from_pretrained( | ||
538 | args.pretrained_model_name_or_path + '/unet', | ||
539 | ) | ||
540 | |||
541 | if args.gradient_checkpointing: | ||
542 | unet.enable_gradient_checkpointing() | ||
543 | |||
544 | slice_size = unet.config.attention_head_dim // 2 | ||
545 | unet.set_attention_slice(slice_size) | ||
546 | |||
547 | token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
548 | # regardless of whether the number of token_ids is 1 or more, it'll set one and then keep repeating. | ||
549 | placeholder_token, placeholder_token_ids = add_tokens_and_get_placeholder_token( | ||
550 | args, token_ids, tokenizer, text_encoder) | ||
551 | |||
552 | # if args.resume_checkpoint is not None: | ||
553 | # token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[ | ||
554 | # args.placeholder_token] | ||
555 | # else: | ||
556 | # token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
557 | |||
558 | # Freeze vae and unet | ||
559 | freeze_params(vae.parameters()) | ||
560 | freeze_params(unet.parameters()) | ||
561 | # Freeze all parameters except for the token embeddings in text encoder | ||
562 | params_to_freeze = itertools.chain( | ||
563 | text_encoder.text_model.encoder.parameters(), | ||
564 | text_encoder.text_model.final_layer_norm.parameters(), | ||
565 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
566 | ) | ||
567 | freeze_params(params_to_freeze) | ||
568 | |||
569 | if args.scale_lr: | ||
570 | args.learning_rate = ( | ||
571 | args.learning_rate * args.gradient_accumulation_steps * | ||
572 | args.train_batch_size * accelerator.num_processes | ||
573 | ) | ||
574 | |||
575 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
576 | if args.use_8bit_adam: | ||
577 | try: | ||
578 | import bitsandbytes as bnb | ||
579 | except ImportError: | ||
580 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
581 | |||
582 | optimizer_class = bnb.optim.AdamW8bit | ||
583 | else: | ||
584 | optimizer_class = torch.optim.AdamW | ||
585 | |||
586 | # Initialize the optimizer | ||
587 | optimizer = optimizer_class( | ||
588 | text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings | ||
589 | lr=args.learning_rate, | ||
590 | betas=(args.adam_beta1, args.adam_beta2), | ||
591 | weight_decay=args.adam_weight_decay, | ||
592 | eps=args.adam_epsilon, | ||
593 | ) | ||
594 | |||
595 | noise_scheduler = DDPMScheduler( | ||
596 | beta_start=0.00085, | ||
597 | beta_end=0.012, | ||
598 | beta_schedule="scaled_linear", | ||
599 | num_train_timesteps=1000 | ||
600 | ) | ||
601 | |||
602 | def collate_fn(examples): | ||
603 | prompts = [example["prompts"] for example in examples] | ||
604 | nprompts = [example["nprompts"] for example in examples] | ||
605 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
606 | pixel_values = [example["instance_images"] for example in examples] | ||
607 | |||
608 | # concat class and instance examples for prior preservation | ||
609 | if args.use_class_images and "class_prompt_ids" in examples[0]: | ||
610 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
611 | pixel_values += [example["class_images"] for example in examples] | ||
612 | |||
613 | pixel_values = torch.stack(pixel_values) | ||
614 | pixel_values = pixel_values.to(dtype=torch.float32, memory_format=torch.contiguous_format) | ||
615 | |||
616 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | ||
617 | |||
618 | batch = { | ||
619 | "prompts": prompts, | ||
620 | "nprompts": nprompts, | ||
621 | "input_ids": input_ids, | ||
622 | "pixel_values": pixel_values, | ||
623 | } | ||
624 | return batch | ||
625 | |||
626 | datamodule = CSVDataModule( | ||
627 | data_file=args.train_data_file, | ||
628 | batch_size=args.train_batch_size, | ||
629 | tokenizer=tokenizer, | ||
630 | instance_identifier=placeholder_token, | ||
631 | class_identifier=args.initializer_token if args.use_class_images else None, | ||
632 | class_subdir="ti_cls", | ||
633 | size=args.resolution, | ||
634 | repeats=args.repeats, | ||
635 | center_crop=args.center_crop, | ||
636 | valid_set_size=args.sample_batch_size*args.sample_batches, | ||
637 | collate_fn=collate_fn | ||
638 | ) | ||
639 | |||
640 | datamodule.prepare_data() | ||
641 | datamodule.setup() | ||
642 | |||
643 | if args.use_class_images: | ||
644 | missing_data = [item for item in datamodule.data if not item[1].exists()] | ||
645 | |||
646 | if len(missing_data) != 0: | ||
647 | batched_data = [missing_data[i:i+args.sample_batch_size] | ||
648 | for i in range(0, len(missing_data), args.sample_batch_size)] | ||
649 | |||
650 | scheduler = EulerAScheduler( | ||
651 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
652 | ) | ||
653 | |||
654 | pipeline = VlpnStableDiffusion( | ||
655 | text_encoder=text_encoder, | ||
656 | vae=vae, | ||
657 | unet=unet, | ||
658 | tokenizer=tokenizer, | ||
659 | scheduler=scheduler, | ||
660 | ).to(accelerator.device) | ||
661 | pipeline.enable_attention_slicing() | ||
662 | |||
663 | for batch in batched_data: | ||
664 | image_name = [p[1] for p in batch] | ||
665 | prompt = [p[2].format(args.initializer_token) for p in batch] | ||
666 | nprompt = [p[3] for p in batch] | ||
667 | |||
668 | with accelerator.autocast(): | ||
669 | images = pipeline( | ||
670 | prompt=prompt, | ||
671 | negative_prompt=nprompt, | ||
672 | num_inference_steps=args.sample_steps | ||
673 | ).images | ||
674 | |||
675 | for i, image in enumerate(images): | ||
676 | image.save(image_name[i]) | ||
677 | |||
678 | del pipeline | ||
679 | |||
680 | if torch.cuda.is_available(): | ||
681 | torch.cuda.empty_cache() | ||
682 | |||
683 | train_dataloader = datamodule.train_dataloader() | ||
684 | val_dataloader = datamodule.val_dataloader() | ||
685 | |||
686 | checkpointer = Checkpointer( | ||
687 | datamodule=datamodule, | ||
688 | accelerator=accelerator, | ||
689 | vae=vae, | ||
690 | unet=unet, | ||
691 | tokenizer=tokenizer, | ||
692 | placeholder_token=args.placeholder_token, | ||
693 | placeholder_token_ids=placeholder_token_ids, | ||
694 | output_dir=basepath, | ||
695 | sample_image_size=args.sample_image_size, | ||
696 | sample_batch_size=args.sample_batch_size, | ||
697 | sample_batches=args.sample_batches, | ||
698 | seed=args.seed | ||
699 | ) | ||
700 | |||
701 | # Scheduler and math around the number of training steps. | ||
702 | overrode_max_train_steps = False | ||
703 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
704 | if args.max_train_steps is None: | ||
705 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
706 | overrode_max_train_steps = True | ||
707 | |||
708 | lr_scheduler = get_scheduler( | ||
709 | args.lr_scheduler, | ||
710 | optimizer=optimizer, | ||
711 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
712 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
713 | ) | ||
714 | |||
715 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
716 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
717 | ) | ||
718 | |||
719 | # Move vae and unet to device | ||
720 | vae.to(accelerator.device) | ||
721 | unet.to(accelerator.device) | ||
722 | |||
723 | # Keep vae and unet in eval mode as we don't train these | ||
724 | vae.eval() | ||
725 | unet.eval() | ||
726 | |||
727 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
728 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
729 | if overrode_max_train_steps: | ||
730 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
731 | |||
732 | num_val_steps_per_epoch = len(val_dataloader) | ||
733 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
734 | val_steps = num_val_steps_per_epoch * num_epochs | ||
735 | |||
736 | # We need to initialize the trackers we use, and also store our configuration. | ||
737 | # The trackers initializes automatically on the main process. | ||
738 | if accelerator.is_main_process: | ||
739 | accelerator.init_trackers("textual_inversion", config=vars(args)) | ||
740 | |||
741 | # Train! | ||
742 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
743 | |||
744 | logger.info("***** Running training *****") | ||
745 | logger.info(f" Num Epochs = {num_epochs}") | ||
746 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
747 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
748 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
749 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
750 | # Only show the progress bar once on each machine. | ||
751 | |||
752 | global_step = 0 | ||
753 | min_val_loss = np.inf | ||
754 | |||
755 | if accelerator.is_main_process: | ||
756 | checkpointer.save_samples( | ||
757 | 0, | ||
758 | text_encoder, | ||
759 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
760 | |||
761 | local_progress_bar = tqdm(range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
762 | disable=not accelerator.is_local_main_process) | ||
763 | local_progress_bar.set_description("Batch X out of Y") | ||
764 | |||
765 | global_progress_bar = tqdm(range(args.max_train_steps + val_steps), disable=not accelerator.is_local_main_process) | ||
766 | global_progress_bar.set_description("Total progress") | ||
767 | |||
768 | try: | ||
769 | for epoch in range(num_epochs): | ||
770 | local_progress_bar.set_description(f"Batch {epoch + 1} out of {num_epochs}") | ||
771 | local_progress_bar.reset() | ||
772 | |||
773 | text_encoder.train() | ||
774 | train_loss = 0.0 | ||
775 | |||
776 | for step, batch in enumerate(train_dataloader): | ||
777 | with accelerator.accumulate(text_encoder): | ||
778 | # Convert images to latent space | ||
779 | with torch.no_grad(): | ||
780 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
781 | latents = latents * 0.18215 | ||
782 | |||
783 | # Sample noise that we'll add to the latents | ||
784 | noise = torch.randn(latents.shape).to(latents.device) | ||
785 | bsz = latents.shape[0] | ||
786 | # Sample a random timestep for each image | ||
787 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
788 | (bsz,), device=latents.device) | ||
789 | timesteps = timesteps.long() | ||
790 | |||
791 | # Add noise to the latents according to the noise magnitude at each timestep | ||
792 | # (this is the forward diffusion process) | ||
793 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
794 | |||
795 | # Get the text embedding for conditioning | ||
796 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
797 | |||
798 | # Predict the noise residual | ||
799 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
800 | |||
801 | if args.use_class_images: | ||
802 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | ||
803 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | ||
804 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
805 | |||
806 | # Compute instance loss | ||
807 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
808 | |||
809 | # Compute prior loss | ||
810 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() | ||
811 | |||
812 | # Add the prior loss to the instance loss. | ||
813 | loss = loss + args.prior_loss_weight * prior_loss | ||
814 | else: | ||
815 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
816 | |||
817 | accelerator.backward(loss) | ||
818 | |||
819 | # Zero out the gradients for all token embeddings except the newly added | ||
820 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
821 | if accelerator.num_processes > 1: | ||
822 | grads = text_encoder.module.get_input_embeddings().weight.grad | ||
823 | else: | ||
824 | grads = text_encoder.get_input_embeddings().weight.grad | ||
825 | # Get the index for tokens that we want to zero the grads for | ||
826 | grad_mask = torch.arange(len(tokenizer)) != placeholder_token_ids[0] | ||
827 | for i in range(1, len(placeholder_token_ids)): | ||
828 | grad_mask = grad_mask & (torch.arange(len(tokenizer)) != placeholder_token_ids[i]) | ||
829 | grads.data[grad_mask, :] = grads.data[grad_mask, :].fill_(0) | ||
830 | |||
831 | optimizer.step() | ||
832 | if not accelerator.optimizer_step_was_skipped: | ||
833 | lr_scheduler.step() | ||
834 | optimizer.zero_grad(set_to_none=True) | ||
835 | |||
836 | loss = loss.detach().item() | ||
837 | train_loss += loss | ||
838 | |||
839 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
840 | if accelerator.sync_gradients: | ||
841 | local_progress_bar.update(1) | ||
842 | global_progress_bar.update(1) | ||
843 | |||
844 | global_step += 1 | ||
845 | |||
846 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
847 | local_progress_bar.clear() | ||
848 | global_progress_bar.clear() | ||
849 | |||
850 | checkpointer.checkpoint(global_step + global_step_offset, "training", text_encoder) | ||
851 | save_resume_file(basepath, args, { | ||
852 | "global_step": global_step + global_step_offset, | ||
853 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
854 | }) | ||
855 | |||
856 | logs = {"mode": "training", "loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | ||
857 | local_progress_bar.set_postfix(**logs) | ||
858 | |||
859 | if global_step >= args.max_train_steps: | ||
860 | break | ||
861 | |||
862 | train_loss /= len(train_dataloader) | ||
863 | |||
864 | accelerator.wait_for_everyone() | ||
865 | |||
866 | text_encoder.eval() | ||
867 | val_loss = 0.0 | ||
868 | |||
869 | for step, batch in enumerate(val_dataloader): | ||
870 | with torch.no_grad(): | ||
871 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
872 | latents = latents * 0.18215 | ||
873 | |||
874 | noise = torch.randn(latents.shape).to(latents.device) | ||
875 | bsz = latents.shape[0] | ||
876 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
877 | (bsz,), device=latents.device) | ||
878 | timesteps = timesteps.long() | ||
879 | |||
880 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
881 | |||
882 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
883 | |||
884 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
885 | |||
886 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
887 | |||
888 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
889 | |||
890 | loss = loss.detach().item() | ||
891 | val_loss += loss | ||
892 | |||
893 | if accelerator.sync_gradients: | ||
894 | local_progress_bar.update(1) | ||
895 | global_progress_bar.update(1) | ||
896 | |||
897 | logs = {"mode": "validation", "loss": loss} | ||
898 | local_progress_bar.set_postfix(**logs) | ||
899 | |||
900 | val_loss /= len(val_dataloader) | ||
901 | |||
902 | accelerator.log({"train/loss": train_loss, "val/loss": val_loss}, step=global_step) | ||
903 | |||
904 | local_progress_bar.clear() | ||
905 | global_progress_bar.clear() | ||
906 | |||
907 | if min_val_loss > val_loss: | ||
908 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
909 | checkpointer.checkpoint(global_step + global_step_offset, "milestone", text_encoder) | ||
910 | min_val_loss = val_loss | ||
911 | |||
912 | if accelerator.is_main_process: | ||
913 | checkpointer.save_samples( | ||
914 | global_step + global_step_offset, | ||
915 | text_encoder, | ||
916 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
917 | |||
918 | # Create the pipeline using using the trained modules and save it. | ||
919 | if accelerator.is_main_process: | ||
920 | print("Finished! Saving final checkpoint and resume state.") | ||
921 | checkpointer.checkpoint( | ||
922 | global_step + global_step_offset, | ||
923 | "end", | ||
924 | text_encoder, | ||
925 | path=f"{basepath}/learned_embeds.bin" | ||
926 | ) | ||
927 | |||
928 | save_resume_file(basepath, args, { | ||
929 | "global_step": global_step + global_step_offset, | ||
930 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
931 | }) | ||
932 | |||
933 | accelerator.end_training() | ||
934 | |||
935 | except KeyboardInterrupt: | ||
936 | if accelerator.is_main_process: | ||
937 | print("Interrupted, saving checkpoint and resume state...") | ||
938 | checkpointer.checkpoint(global_step + global_step_offset, "end", text_encoder) | ||
939 | save_resume_file(basepath, args, { | ||
940 | "global_step": global_step + global_step_offset, | ||
941 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
942 | }) | ||
943 | accelerator.end_training() | ||
944 | quit() | ||
945 | |||
946 | |||
947 | if __name__ == "__main__": | ||
948 | main() | ||
diff --git a/textual_inversion.py b/textual_inversion.py index d842288..7919ebd 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
@@ -230,7 +230,7 @@ def parse_args(): | |||
230 | parser.add_argument( | 230 | parser.add_argument( |
231 | "--sample_steps", | 231 | "--sample_steps", |
232 | type=int, | 232 | type=int, |
233 | default=40, | 233 | default=30, |
234 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | 234 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", |
235 | ) | 235 | ) |
236 | parser.add_argument( | 236 | parser.add_argument( |
@@ -329,7 +329,7 @@ class Checkpointer: | |||
329 | self.placeholder_token_id = placeholder_token_id | 329 | self.placeholder_token_id = placeholder_token_id |
330 | self.output_dir = output_dir | 330 | self.output_dir = output_dir |
331 | self.sample_image_size = sample_image_size | 331 | self.sample_image_size = sample_image_size |
332 | self.seed = seed | 332 | self.seed = seed or torch.random.seed() |
333 | self.sample_batches = sample_batches | 333 | self.sample_batches = sample_batches |
334 | self.sample_batch_size = sample_batch_size | 334 | self.sample_batch_size = sample_batch_size |
335 | 335 | ||
@@ -481,9 +481,9 @@ def main(): | |||
481 | # Convert the initializer_token, placeholder_token to ids | 481 | # Convert the initializer_token, placeholder_token to ids |
482 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | 482 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) |
483 | # Check if initializer_token is a single token or a sequence of tokens | 483 | # Check if initializer_token is a single token or a sequence of tokens |
484 | if args.vectors_per_token % len(initializer_token_ids) != 0: | 484 | if len(initializer_token_ids) > 1: |
485 | raise ValueError( | 485 | raise ValueError( |
486 | f"vectors_per_token ({args.vectors_per_token}) must be divisible by initializer token ({len(initializer_token_ids)}).") | 486 | f"initializer_token_ids must not have more than 1 vector, but it's {len(initializer_token_ids)}.") |
487 | 487 | ||
488 | initializer_token_ids = torch.tensor(initializer_token_ids) | 488 | initializer_token_ids = torch.tensor(initializer_token_ids) |
489 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | 489 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
@@ -590,7 +590,7 @@ def main(): | |||
590 | sample_image_size=args.sample_image_size, | 590 | sample_image_size=args.sample_image_size, |
591 | sample_batch_size=args.sample_batch_size, | 591 | sample_batch_size=args.sample_batch_size, |
592 | sample_batches=args.sample_batches, | 592 | sample_batches=args.sample_batches, |
593 | seed=args.seed or torch.random.seed() | 593 | seed=args.seed |
594 | ) | 594 | ) |
595 | 595 | ||
596 | # Scheduler and math around the number of training steps. | 596 | # Scheduler and math around the number of training steps. |
@@ -620,8 +620,7 @@ def main(): | |||
620 | unet.eval() | 620 | unet.eval() |
621 | 621 | ||
622 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | 622 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. |
623 | num_update_steps_per_epoch = math.ceil( | 623 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
624 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
625 | if overrode_max_train_steps: | 624 | if overrode_max_train_steps: |
626 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | 625 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
627 | 626 | ||