diff options
| -rw-r--r-- | data/dreambooth/csv.py | 11 | ||||
| -rw-r--r-- | data/dreambooth/prompt.py | 18 | ||||
| -rw-r--r-- | dreambooth.py | 25 | ||||
| -rw-r--r-- | textual_dreambooth.py | 948 | ||||
| -rw-r--r-- | textual_inversion.py | 13 |
5 files changed, 968 insertions, 47 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py index 9075979..abd329d 100644 --- a/data/dreambooth/csv.py +++ b/data/dreambooth/csv.py | |||
| @@ -15,6 +15,7 @@ class CSVDataModule(pl.LightningDataModule): | |||
| 15 | tokenizer, | 15 | tokenizer, |
| 16 | instance_identifier, | 16 | instance_identifier, |
| 17 | class_identifier=None, | 17 | class_identifier=None, |
| 18 | class_subdir="db_cls", | ||
| 18 | size=512, | 19 | size=512, |
| 19 | repeats=100, | 20 | repeats=100, |
| 20 | interpolation="bicubic", | 21 | interpolation="bicubic", |
| @@ -30,7 +31,7 @@ class CSVDataModule(pl.LightningDataModule): | |||
| 30 | raise ValueError("data_file must be a file") | 31 | raise ValueError("data_file must be a file") |
| 31 | 32 | ||
| 32 | self.data_root = self.data_file.parent | 33 | self.data_root = self.data_file.parent |
| 33 | self.class_root = self.data_root.joinpath("db_cls") | 34 | self.class_root = self.data_root.joinpath(class_subdir) |
| 34 | self.class_root.mkdir(parents=True, exist_ok=True) | 35 | self.class_root.mkdir(parents=True, exist_ok=True) |
| 35 | 36 | ||
| 36 | self.tokenizer = tokenizer | 37 | self.tokenizer = tokenizer |
| @@ -140,11 +141,9 @@ class CSVDataset(Dataset): | |||
| 140 | if not instance_image.mode == "RGB": | 141 | if not instance_image.mode == "RGB": |
| 141 | instance_image = instance_image.convert("RGB") | 142 | instance_image = instance_image.convert("RGB") |
| 142 | 143 | ||
| 143 | instance_prompt = prompt.format(self.instance_identifier) | ||
| 144 | |||
| 145 | example["instance_images"] = instance_image | 144 | example["instance_images"] = instance_image |
| 146 | example["instance_prompt_ids"] = self.tokenizer( | 145 | example["instance_prompt_ids"] = self.tokenizer( |
| 147 | instance_prompt, | 146 | prompt.format(self.instance_identifier), |
| 148 | padding="do_not_pad", | 147 | padding="do_not_pad", |
| 149 | truncation=True, | 148 | truncation=True, |
| 150 | max_length=self.tokenizer.model_max_length, | 149 | max_length=self.tokenizer.model_max_length, |
| @@ -155,11 +154,9 @@ class CSVDataset(Dataset): | |||
| 155 | if not class_image.mode == "RGB": | 154 | if not class_image.mode == "RGB": |
| 156 | class_image = class_image.convert("RGB") | 155 | class_image = class_image.convert("RGB") |
| 157 | 156 | ||
| 158 | class_prompt = prompt.format(self.class_identifier) | ||
| 159 | |||
| 160 | example["class_images"] = class_image | 157 | example["class_images"] = class_image |
| 161 | example["class_prompt_ids"] = self.tokenizer( | 158 | example["class_prompt_ids"] = self.tokenizer( |
| 162 | class_prompt, | 159 | prompt.format(self.class_identifier), |
| 163 | padding="do_not_pad", | 160 | padding="do_not_pad", |
| 164 | truncation=True, | 161 | truncation=True, |
| 165 | max_length=self.tokenizer.model_max_length, | 162 | max_length=self.tokenizer.model_max_length, |
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py deleted file mode 100644 index b3a83ce..0000000 --- a/data/dreambooth/prompt.py +++ /dev/null | |||
| @@ -1,18 +0,0 @@ | |||
| 1 | from torch.utils.data import Dataset | ||
| 2 | |||
| 3 | |||
| 4 | class PromptDataset(Dataset): | ||
| 5 | def __init__(self, prompt, nprompt, num_samples): | ||
| 6 | self.prompt = prompt | ||
| 7 | self.nprompt = nprompt | ||
| 8 | self.num_samples = num_samples | ||
| 9 | |||
| 10 | def __len__(self): | ||
| 11 | return self.num_samples | ||
| 12 | |||
| 13 | def __getitem__(self, index): | ||
| 14 | example = {} | ||
| 15 | example["prompt"] = self.prompt | ||
| 16 | example["nprompt"] = self.nprompt | ||
| 17 | example["index"] = index | ||
| 18 | return example | ||
diff --git a/dreambooth.py b/dreambooth.py index aedf25c..0c5c42a 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
| @@ -24,7 +24,6 @@ from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | |||
| 24 | import json | 24 | import json |
| 25 | 25 | ||
| 26 | from data.dreambooth.csv import CSVDataModule | 26 | from data.dreambooth.csv import CSVDataModule |
| 27 | from data.dreambooth.prompt import PromptDataset | ||
| 28 | 27 | ||
| 29 | logger = get_logger(__name__) | 28 | logger = get_logger(__name__) |
| 30 | 29 | ||
| @@ -122,7 +121,7 @@ def parse_args(): | |||
| 122 | parser.add_argument( | 121 | parser.add_argument( |
| 123 | "--learning_rate", | 122 | "--learning_rate", |
| 124 | type=float, | 123 | type=float, |
| 125 | default=3e-6, | 124 | default=1e-6, |
| 126 | help="Initial learning rate (after the potential warmup period) to use.", | 125 | help="Initial learning rate (after the potential warmup period) to use.", |
| 127 | ) | 126 | ) |
| 128 | parser.add_argument( | 127 | parser.add_argument( |
| @@ -219,17 +218,10 @@ def parse_args(): | |||
| 219 | parser.add_argument( | 218 | parser.add_argument( |
| 220 | "--sample_steps", | 219 | "--sample_steps", |
| 221 | type=int, | 220 | type=int, |
| 222 | default=40, | 221 | default=30, |
| 223 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | 222 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", |
| 224 | ) | 223 | ) |
| 225 | parser.add_argument( | 224 | parser.add_argument( |
| 226 | "--class_data_dir", | ||
| 227 | type=str, | ||
| 228 | default=None, | ||
| 229 | required=False, | ||
| 230 | help="A folder containing the training data of class images.", | ||
| 231 | ) | ||
| 232 | parser.add_argument( | ||
| 233 | "--prior_loss_weight", | 225 | "--prior_loss_weight", |
| 234 | type=float, | 226 | type=float, |
| 235 | default=1.0, | 227 | default=1.0, |
| @@ -311,7 +303,7 @@ class Checkpointer: | |||
| 311 | self.output_dir = output_dir | 303 | self.output_dir = output_dir |
| 312 | self.instance_identifier = instance_identifier | 304 | self.instance_identifier = instance_identifier |
| 313 | self.sample_image_size = sample_image_size | 305 | self.sample_image_size = sample_image_size |
| 314 | self.seed = seed | 306 | self.seed = seed or torch.random.seed() |
| 315 | self.sample_batches = sample_batches | 307 | self.sample_batches = sample_batches |
| 316 | self.sample_batch_size = sample_batch_size | 308 | self.sample_batch_size = sample_batch_size |
| 317 | 309 | ||
| @@ -406,6 +398,8 @@ class Checkpointer: | |||
| 406 | del unwrapped | 398 | del unwrapped |
| 407 | del scheduler | 399 | del scheduler |
| 408 | del pipeline | 400 | del pipeline |
| 401 | del generator | ||
| 402 | del stable_latents | ||
| 409 | 403 | ||
| 410 | if torch.cuda.is_available(): | 404 | if torch.cuda.is_available(): |
| 411 | torch.cuda.empty_cache() | 405 | torch.cuda.empty_cache() |
| @@ -523,11 +517,13 @@ def main(): | |||
| 523 | tokenizer=tokenizer, | 517 | tokenizer=tokenizer, |
| 524 | instance_identifier=args.instance_identifier, | 518 | instance_identifier=args.instance_identifier, |
| 525 | class_identifier=args.class_identifier, | 519 | class_identifier=args.class_identifier, |
| 520 | class_subdir="db_cls", | ||
| 526 | size=args.resolution, | 521 | size=args.resolution, |
| 527 | repeats=args.repeats, | 522 | repeats=args.repeats, |
| 528 | center_crop=args.center_crop, | 523 | center_crop=args.center_crop, |
| 529 | valid_set_size=args.sample_batch_size*args.sample_batches, | 524 | valid_set_size=args.sample_batch_size*args.sample_batches, |
| 530 | collate_fn=collate_fn) | 525 | collate_fn=collate_fn |
| 526 | ) | ||
| 531 | 527 | ||
| 532 | datamodule.prepare_data() | 528 | datamodule.prepare_data() |
| 533 | datamodule.setup() | 529 | datamodule.setup() |
| @@ -587,7 +583,7 @@ def main(): | |||
| 587 | sample_image_size=args.sample_image_size, | 583 | sample_image_size=args.sample_image_size, |
| 588 | sample_batch_size=args.sample_batch_size, | 584 | sample_batch_size=args.sample_batch_size, |
| 589 | sample_batches=args.sample_batches, | 585 | sample_batches=args.sample_batches, |
| 590 | seed=args.seed or torch.random.seed() | 586 | seed=args.seed |
| 591 | ) | 587 | ) |
| 592 | 588 | ||
| 593 | # Scheduler and math around the number of training steps. | 589 | # Scheduler and math around the number of training steps. |
| @@ -699,8 +695,7 @@ def main(): | |||
| 699 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | 695 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
| 700 | 696 | ||
| 701 | # Compute prior loss | 697 | # Compute prior loss |
| 702 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, | 698 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() |
| 703 | reduction="none").mean([1, 2, 3]).mean() | ||
| 704 | 699 | ||
| 705 | # Add the prior loss to the instance loss. | 700 | # Add the prior loss to the instance loss. |
| 706 | loss = loss + args.prior_loss_weight * prior_loss | 701 | loss = loss + args.prior_loss_weight * prior_loss |
diff --git a/textual_dreambooth.py b/textual_dreambooth.py new file mode 100644 index 0000000..a46953d --- /dev/null +++ b/textual_dreambooth.py | |||
| @@ -0,0 +1,948 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import os | ||
| 5 | import datetime | ||
| 6 | import logging | ||
| 7 | from pathlib import Path | ||
| 8 | |||
| 9 | import numpy as np | ||
| 10 | import torch | ||
| 11 | import torch.nn.functional as F | ||
| 12 | import torch.utils.checkpoint | ||
| 13 | |||
| 14 | from accelerate import Accelerator | ||
| 15 | from accelerate.logging import get_logger | ||
| 16 | from accelerate.utils import LoggerType, set_seed | ||
| 17 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | ||
| 18 | from schedulers.scheduling_euler_a import EulerAScheduler | ||
| 19 | from diffusers.optimization import get_scheduler | ||
| 20 | from PIL import Image | ||
| 21 | from tqdm.auto import tqdm | ||
| 22 | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | ||
| 23 | from slugify import slugify | ||
| 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 25 | import json | ||
| 26 | import os | ||
| 27 | |||
| 28 | from data.dreambooth.csv import CSVDataModule | ||
| 29 | |||
| 30 | logger = get_logger(__name__) | ||
| 31 | |||
| 32 | |||
| 33 | torch.backends.cuda.matmul.allow_tf32 = True | ||
| 34 | |||
| 35 | |||
| 36 | def parse_args(): | ||
| 37 | parser = argparse.ArgumentParser( | ||
| 38 | description="Simple example of a training script." | ||
| 39 | ) | ||
| 40 | parser.add_argument( | ||
| 41 | "--pretrained_model_name_or_path", | ||
| 42 | type=str, | ||
| 43 | default=None, | ||
| 44 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 45 | ) | ||
| 46 | parser.add_argument( | ||
| 47 | "--tokenizer_name", | ||
| 48 | type=str, | ||
| 49 | default=None, | ||
| 50 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 51 | ) | ||
| 52 | parser.add_argument( | ||
| 53 | "--train_data_file", | ||
| 54 | type=str, | ||
| 55 | default=None, | ||
| 56 | help="A CSV file containing the training data." | ||
| 57 | ) | ||
| 58 | parser.add_argument( | ||
| 59 | "--placeholder_token", | ||
| 60 | type=str, | ||
| 61 | default=None, | ||
| 62 | help="A token to use as a placeholder for the concept.", | ||
| 63 | ) | ||
| 64 | parser.add_argument( | ||
| 65 | "--initializer_token", | ||
| 66 | type=str, | ||
| 67 | default=None, | ||
| 68 | help="A token to use as initializer word." | ||
| 69 | ) | ||
| 70 | parser.add_argument( | ||
| 71 | "--num_vec_per_token", | ||
| 72 | type=int, | ||
| 73 | default=1, | ||
| 74 | help=( | ||
| 75 | "The number of vectors used to represent the placeholder token. The higher the number, the better the" | ||
| 76 | " result at the cost of editability. This can be fixed by prompt editing." | ||
| 77 | ), | ||
| 78 | ) | ||
| 79 | parser.add_argument( | ||
| 80 | "--initialize_rest_random", | ||
| 81 | action="store_true", | ||
| 82 | help="Initialize rest of the placeholder tokens with random." | ||
| 83 | ) | ||
| 84 | parser.add_argument( | ||
| 85 | "--use_class_images", | ||
| 86 | action="store_true", | ||
| 87 | default=True, | ||
| 88 | help="Include class images in the loss calculation a la Dreambooth.", | ||
| 89 | ) | ||
| 90 | parser.add_argument( | ||
| 91 | "--repeats", | ||
| 92 | type=int, | ||
| 93 | default=100, | ||
| 94 | help="How many times to repeat the training data.") | ||
| 95 | parser.add_argument( | ||
| 96 | "--output_dir", | ||
| 97 | type=str, | ||
| 98 | default="output/text-inversion", | ||
| 99 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 100 | ) | ||
| 101 | parser.add_argument( | ||
| 102 | "--seed", | ||
| 103 | type=int, | ||
| 104 | default=None, | ||
| 105 | help="A seed for reproducible training.") | ||
| 106 | parser.add_argument( | ||
| 107 | "--resolution", | ||
| 108 | type=int, | ||
| 109 | default=512, | ||
| 110 | help=( | ||
| 111 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 112 | " resolution" | ||
| 113 | ), | ||
| 114 | ) | ||
| 115 | parser.add_argument( | ||
| 116 | "--center_crop", | ||
| 117 | action="store_true", | ||
| 118 | help="Whether to center crop images before resizing to resolution" | ||
| 119 | ) | ||
| 120 | parser.add_argument( | ||
| 121 | "--num_train_epochs", | ||
| 122 | type=int, | ||
| 123 | default=100) | ||
| 124 | parser.add_argument( | ||
| 125 | "--max_train_steps", | ||
| 126 | type=int, | ||
| 127 | default=5000, | ||
| 128 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 129 | ) | ||
| 130 | parser.add_argument( | ||
| 131 | "--gradient_accumulation_steps", | ||
| 132 | type=int, | ||
| 133 | default=1, | ||
| 134 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 135 | ) | ||
| 136 | parser.add_argument( | ||
| 137 | "--gradient_checkpointing", | ||
| 138 | action="store_true", | ||
| 139 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 140 | ) | ||
| 141 | parser.add_argument( | ||
| 142 | "--learning_rate", | ||
| 143 | type=float, | ||
| 144 | default=1e-4, | ||
| 145 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 146 | ) | ||
| 147 | parser.add_argument( | ||
| 148 | "--scale_lr", | ||
| 149 | action="store_true", | ||
| 150 | default=True, | ||
| 151 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 152 | ) | ||
| 153 | parser.add_argument( | ||
| 154 | "--lr_scheduler", | ||
| 155 | type=str, | ||
| 156 | default="constant", | ||
| 157 | help=( | ||
| 158 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 159 | ' "constant", "constant_with_warmup"]' | ||
| 160 | ), | ||
| 161 | ) | ||
| 162 | parser.add_argument( | ||
| 163 | "--lr_warmup_steps", | ||
| 164 | type=int, | ||
| 165 | default=500, | ||
| 166 | help="Number of steps for the warmup in the lr scheduler." | ||
| 167 | ) | ||
| 168 | parser.add_argument( | ||
| 169 | "--use_8bit_adam", | ||
| 170 | action="store_true", | ||
| 171 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
| 172 | ) | ||
| 173 | parser.add_argument( | ||
| 174 | "--adam_beta1", | ||
| 175 | type=float, | ||
| 176 | default=0.9, | ||
| 177 | help="The beta1 parameter for the Adam optimizer." | ||
| 178 | ) | ||
| 179 | parser.add_argument( | ||
| 180 | "--adam_beta2", | ||
| 181 | type=float, | ||
| 182 | default=0.999, | ||
| 183 | help="The beta2 parameter for the Adam optimizer." | ||
| 184 | ) | ||
| 185 | parser.add_argument( | ||
| 186 | "--adam_weight_decay", | ||
| 187 | type=float, | ||
| 188 | default=1e-2, | ||
| 189 | help="Weight decay to use." | ||
| 190 | ) | ||
| 191 | parser.add_argument( | ||
| 192 | "--adam_epsilon", | ||
| 193 | type=float, | ||
| 194 | default=1e-08, | ||
| 195 | help="Epsilon value for the Adam optimizer" | ||
| 196 | ) | ||
| 197 | parser.add_argument( | ||
| 198 | "--mixed_precision", | ||
| 199 | type=str, | ||
| 200 | default="no", | ||
| 201 | choices=["no", "fp16", "bf16"], | ||
| 202 | help=( | ||
| 203 | "Whether to use mixed precision. Choose" | ||
| 204 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 205 | "and an Nvidia Ampere GPU." | ||
| 206 | ), | ||
| 207 | ) | ||
| 208 | parser.add_argument( | ||
| 209 | "--local_rank", | ||
| 210 | type=int, | ||
| 211 | default=-1, | ||
| 212 | help="For distributed training: local_rank" | ||
| 213 | ) | ||
| 214 | parser.add_argument( | ||
| 215 | "--checkpoint_frequency", | ||
| 216 | type=int, | ||
| 217 | default=500, | ||
| 218 | help="How often to save a checkpoint and sample image", | ||
| 219 | ) | ||
| 220 | parser.add_argument( | ||
| 221 | "--sample_image_size", | ||
| 222 | type=int, | ||
| 223 | default=512, | ||
| 224 | help="Size of sample images", | ||
| 225 | ) | ||
| 226 | parser.add_argument( | ||
| 227 | "--sample_batches", | ||
| 228 | type=int, | ||
| 229 | default=1, | ||
| 230 | help="Number of sample batches to generate per checkpoint", | ||
| 231 | ) | ||
| 232 | parser.add_argument( | ||
| 233 | "--sample_batch_size", | ||
| 234 | type=int, | ||
| 235 | default=1, | ||
| 236 | help="Number of samples to generate per batch", | ||
| 237 | ) | ||
| 238 | parser.add_argument( | ||
| 239 | "--train_batch_size", | ||
| 240 | type=int, | ||
| 241 | default=1, | ||
| 242 | help="Batch size (per device) for the training dataloader." | ||
| 243 | ) | ||
| 244 | parser.add_argument( | ||
| 245 | "--sample_steps", | ||
| 246 | type=int, | ||
| 247 | default=30, | ||
| 248 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 249 | ) | ||
| 250 | parser.add_argument( | ||
| 251 | "--prior_loss_weight", | ||
| 252 | type=float, | ||
| 253 | default=1.0, | ||
| 254 | help="The weight of prior preservation loss." | ||
| 255 | ) | ||
| 256 | parser.add_argument( | ||
| 257 | "--resume_from", | ||
| 258 | type=str, | ||
| 259 | default=None, | ||
| 260 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" | ||
| 261 | ) | ||
| 262 | parser.add_argument( | ||
| 263 | "--resume_checkpoint", | ||
| 264 | type=str, | ||
| 265 | default=None, | ||
| 266 | help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)." | ||
| 267 | ) | ||
| 268 | parser.add_argument( | ||
| 269 | "--config", | ||
| 270 | type=str, | ||
| 271 | default=None, | ||
| 272 | help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this." | ||
| 273 | ) | ||
| 274 | |||
| 275 | args = parser.parse_args() | ||
| 276 | if args.resume_from is not None: | ||
| 277 | with open(f"{args.resume_from}/resume.json", 'rt') as f: | ||
| 278 | args = parser.parse_args( | ||
| 279 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 280 | elif args.config is not None: | ||
| 281 | with open(args.config, 'rt') as f: | ||
| 282 | args = parser.parse_args( | ||
| 283 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 284 | |||
| 285 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
| 286 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
| 287 | args.local_rank = env_local_rank | ||
| 288 | |||
| 289 | if args.train_data_file is None: | ||
| 290 | raise ValueError("You must specify --train_data_file") | ||
| 291 | |||
| 292 | if args.pretrained_model_name_or_path is None: | ||
| 293 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 294 | |||
| 295 | if args.placeholder_token is None: | ||
| 296 | raise ValueError("You must specify --placeholder_token") | ||
| 297 | |||
| 298 | if args.initializer_token is None: | ||
| 299 | raise ValueError("You must specify --initializer_token") | ||
| 300 | |||
| 301 | if args.output_dir is None: | ||
| 302 | raise ValueError("You must specify --output_dir") | ||
| 303 | |||
| 304 | return args | ||
| 305 | |||
| 306 | |||
| 307 | def freeze_params(params): | ||
| 308 | for param in params: | ||
| 309 | param.requires_grad = False | ||
| 310 | |||
| 311 | |||
| 312 | def save_resume_file(basepath, args, extra={}): | ||
| 313 | info = {"args": vars(args)} | ||
| 314 | info["args"].update(extra) | ||
| 315 | with open(f"{basepath}/resume.json", "w") as f: | ||
| 316 | json.dump(info, f, indent=4) | ||
| 317 | |||
| 318 | |||
| 319 | def make_grid(images, rows, cols): | ||
| 320 | w, h = images[0].size | ||
| 321 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 322 | for i, image in enumerate(images): | ||
| 323 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 324 | return grid | ||
| 325 | |||
| 326 | |||
| 327 | def add_tokens_and_get_placeholder_token(args, token_ids, tokenizer, text_encoder): | ||
| 328 | assert args.num_vec_per_token >= len(token_ids) | ||
| 329 | placeholder_tokens = [f"{args.placeholder_token}_{i}" for i in range(args.num_vec_per_token)] | ||
| 330 | |||
| 331 | for placeholder_token in placeholder_tokens: | ||
| 332 | num_added_tokens = tokenizer.add_tokens(placeholder_token) | ||
| 333 | if num_added_tokens == 0: | ||
| 334 | raise ValueError( | ||
| 335 | f"The tokenizer already contains the token {placeholder_token}. Please pass a different" | ||
| 336 | " `placeholder_token` that is not already in the tokenizer." | ||
| 337 | ) | ||
| 338 | |||
| 339 | placeholder_token = " ".join(placeholder_tokens) | ||
| 340 | placeholder_token_ids = tokenizer.encode(placeholder_token, add_special_tokens=False) | ||
| 341 | |||
| 342 | print(f"The placeholder tokens are {placeholder_token} while the ids are {placeholder_token_ids}") | ||
| 343 | |||
| 344 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
| 345 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
| 346 | |||
| 347 | if args.initialize_rest_random: | ||
| 348 | # The idea is that the placeholder tokens form adjectives as in x x x white dog. | ||
| 349 | for i, placeholder_token_id in enumerate(placeholder_token_ids): | ||
| 350 | if len(placeholder_token_ids) - i < len(token_ids): | ||
| 351 | token_embeds[placeholder_token_id] = token_embeds[token_ids[i % len(token_ids)]] | ||
| 352 | else: | ||
| 353 | token_embeds[placeholder_token_id] = torch.rand_like(token_embeds[placeholder_token_id]) | ||
| 354 | else: | ||
| 355 | for i, placeholder_token_id in enumerate(placeholder_token_ids): | ||
| 356 | token_embeds[placeholder_token_id] = token_embeds[token_ids[i % len(token_ids)]] | ||
| 357 | |||
| 358 | return placeholder_token, placeholder_token_ids | ||
| 359 | |||
| 360 | |||
| 361 | class Checkpointer: | ||
| 362 | def __init__( | ||
| 363 | self, | ||
| 364 | datamodule, | ||
| 365 | accelerator, | ||
| 366 | vae, | ||
| 367 | unet, | ||
| 368 | tokenizer, | ||
| 369 | placeholder_token, | ||
| 370 | placeholder_token_ids, | ||
| 371 | output_dir, | ||
| 372 | sample_image_size, | ||
| 373 | sample_batches, | ||
| 374 | sample_batch_size, | ||
| 375 | seed | ||
| 376 | ): | ||
| 377 | self.datamodule = datamodule | ||
| 378 | self.accelerator = accelerator | ||
| 379 | self.vae = vae | ||
| 380 | self.unet = unet | ||
| 381 | self.tokenizer = tokenizer | ||
| 382 | self.placeholder_token = placeholder_token | ||
| 383 | self.placeholder_token_ids = placeholder_token_ids | ||
| 384 | self.output_dir = output_dir | ||
| 385 | self.sample_image_size = sample_image_size | ||
| 386 | self.seed = seed or torch.random.seed() | ||
| 387 | self.sample_batches = sample_batches | ||
| 388 | self.sample_batch_size = sample_batch_size | ||
| 389 | |||
| 390 | @torch.no_grad() | ||
| 391 | def checkpoint(self, step, postfix, text_encoder, save_samples=True, path=None): | ||
| 392 | print("Saving checkpoint for step %d..." % step) | ||
| 393 | |||
| 394 | if path is None: | ||
| 395 | checkpoints_path = f"{self.output_dir}/checkpoints" | ||
| 396 | os.makedirs(checkpoints_path, exist_ok=True) | ||
| 397 | |||
| 398 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
| 399 | |||
| 400 | # Save a checkpoint | ||
| 401 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_ids] | ||
| 402 | learned_embeds_dict = {} | ||
| 403 | for i, placeholder_token in enumerate(self.placeholder_token.split(" ")): | ||
| 404 | learned_embeds_dict[placeholder_token] = learned_embeds[i].detach().cpu() | ||
| 405 | |||
| 406 | filename = f"%s_%d_%s.bin" % (slugify(self.placeholder_token), step, postfix) | ||
| 407 | if path is not None: | ||
| 408 | torch.save(learned_embeds_dict, path) | ||
| 409 | else: | ||
| 410 | torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}") | ||
| 411 | torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin") | ||
| 412 | |||
| 413 | del unwrapped | ||
| 414 | del learned_embeds | ||
| 415 | |||
| 416 | @torch.no_grad() | ||
| 417 | def save_samples(self, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps): | ||
| 418 | samples_path = Path(self.output_dir).joinpath("samples") | ||
| 419 | |||
| 420 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
| 421 | scheduler = EulerAScheduler( | ||
| 422 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 423 | ) | ||
| 424 | |||
| 425 | # Save a sample image | ||
| 426 | pipeline = VlpnStableDiffusion( | ||
| 427 | text_encoder=unwrapped, | ||
| 428 | vae=self.vae, | ||
| 429 | unet=self.unet, | ||
| 430 | tokenizer=self.tokenizer, | ||
| 431 | scheduler=scheduler, | ||
| 432 | ).to(self.accelerator.device) | ||
| 433 | pipeline.enable_attention_slicing() | ||
| 434 | |||
| 435 | train_data = self.datamodule.train_dataloader() | ||
| 436 | val_data = self.datamodule.val_dataloader() | ||
| 437 | |||
| 438 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
| 439 | stable_latents = torch.randn( | ||
| 440 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
| 441 | device=pipeline.device, | ||
| 442 | generator=generator, | ||
| 443 | ) | ||
| 444 | |||
| 445 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
| 446 | all_samples = [] | ||
| 447 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | ||
| 448 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 449 | |||
| 450 | data_enum = enumerate(data) | ||
| 451 | |||
| 452 | for i in range(self.sample_batches): | ||
| 453 | batches = [batch for j, batch in data_enum if j * data.batch_size < self.sample_batch_size] | ||
| 454 | prompt = [prompt.format(self.placeholder_token) | ||
| 455 | for batch in batches for prompt in batch["prompts"]][:self.sample_batch_size] | ||
| 456 | nprompt = [prompt for batch in batches for prompt in batch["nprompts"]][:self.sample_batch_size] | ||
| 457 | |||
| 458 | with self.accelerator.autocast(): | ||
| 459 | samples = pipeline( | ||
| 460 | prompt=prompt, | ||
| 461 | negative_prompt=nprompt, | ||
| 462 | height=self.sample_image_size, | ||
| 463 | width=self.sample_image_size, | ||
| 464 | latents=latents[:len(prompt)] if latents is not None else None, | ||
| 465 | generator=generator if latents is not None else None, | ||
| 466 | guidance_scale=guidance_scale, | ||
| 467 | eta=eta, | ||
| 468 | num_inference_steps=num_inference_steps, | ||
| 469 | output_type='pil' | ||
| 470 | )["sample"] | ||
| 471 | |||
| 472 | all_samples += samples | ||
| 473 | |||
| 474 | del samples | ||
| 475 | |||
| 476 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
| 477 | image_grid.save(file_path) | ||
| 478 | |||
| 479 | del all_samples | ||
| 480 | del image_grid | ||
| 481 | |||
| 482 | del unwrapped | ||
| 483 | del scheduler | ||
| 484 | del pipeline | ||
| 485 | del generator | ||
| 486 | del stable_latents | ||
| 487 | |||
| 488 | if torch.cuda.is_available(): | ||
| 489 | torch.cuda.empty_cache() | ||
| 490 | |||
| 491 | |||
| 492 | def main(): | ||
| 493 | args = parse_args() | ||
| 494 | |||
| 495 | global_step_offset = 0 | ||
| 496 | if args.resume_from is not None: | ||
| 497 | basepath = Path(args.resume_from) | ||
| 498 | print("Resuming state from %s" % args.resume_from) | ||
| 499 | with open(basepath.joinpath("resume.json"), 'r') as f: | ||
| 500 | state = json.load(f) | ||
| 501 | global_step_offset = state["args"].get("global_step", 0) | ||
| 502 | |||
| 503 | print("We've trained %d steps so far" % global_step_offset) | ||
| 504 | else: | ||
| 505 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 506 | basepath = Path(args.output_dir).joinpath(slugify(args.placeholder_token), now) | ||
| 507 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 508 | |||
| 509 | accelerator = Accelerator( | ||
| 510 | log_with=LoggerType.TENSORBOARD, | ||
| 511 | logging_dir=f"{basepath}", | ||
| 512 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 513 | mixed_precision=args.mixed_precision | ||
| 514 | ) | ||
| 515 | |||
| 516 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 517 | |||
| 518 | # If passed along, set the training seed now. | ||
| 519 | if args.seed is not None: | ||
| 520 | set_seed(args.seed) | ||
| 521 | |||
| 522 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 523 | if args.tokenizer_name: | ||
| 524 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 525 | elif args.pretrained_model_name_or_path: | ||
| 526 | tokenizer = CLIPTokenizer.from_pretrained( | ||
| 527 | args.pretrained_model_name_or_path + '/tokenizer' | ||
| 528 | ) | ||
| 529 | |||
| 530 | # Load models and create wrapper for stable diffusion | ||
| 531 | text_encoder = CLIPTextModel.from_pretrained( | ||
| 532 | args.pretrained_model_name_or_path + '/text_encoder', | ||
| 533 | ) | ||
| 534 | vae = AutoencoderKL.from_pretrained( | ||
| 535 | args.pretrained_model_name_or_path + '/vae', | ||
| 536 | ) | ||
| 537 | unet = UNet2DConditionModel.from_pretrained( | ||
| 538 | args.pretrained_model_name_or_path + '/unet', | ||
| 539 | ) | ||
| 540 | |||
| 541 | if args.gradient_checkpointing: | ||
| 542 | unet.enable_gradient_checkpointing() | ||
| 543 | |||
| 544 | slice_size = unet.config.attention_head_dim // 2 | ||
| 545 | unet.set_attention_slice(slice_size) | ||
| 546 | |||
| 547 | token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
| 548 | # regardless of whether the number of token_ids is 1 or more, it'll set one and then keep repeating. | ||
| 549 | placeholder_token, placeholder_token_ids = add_tokens_and_get_placeholder_token( | ||
| 550 | args, token_ids, tokenizer, text_encoder) | ||
| 551 | |||
| 552 | # if args.resume_checkpoint is not None: | ||
| 553 | # token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[ | ||
| 554 | # args.placeholder_token] | ||
| 555 | # else: | ||
| 556 | # token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
| 557 | |||
| 558 | # Freeze vae and unet | ||
| 559 | freeze_params(vae.parameters()) | ||
| 560 | freeze_params(unet.parameters()) | ||
| 561 | # Freeze all parameters except for the token embeddings in text encoder | ||
| 562 | params_to_freeze = itertools.chain( | ||
| 563 | text_encoder.text_model.encoder.parameters(), | ||
| 564 | text_encoder.text_model.final_layer_norm.parameters(), | ||
| 565 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
| 566 | ) | ||
| 567 | freeze_params(params_to_freeze) | ||
| 568 | |||
| 569 | if args.scale_lr: | ||
| 570 | args.learning_rate = ( | ||
| 571 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 572 | args.train_batch_size * accelerator.num_processes | ||
| 573 | ) | ||
| 574 | |||
| 575 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 576 | if args.use_8bit_adam: | ||
| 577 | try: | ||
| 578 | import bitsandbytes as bnb | ||
| 579 | except ImportError: | ||
| 580 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 581 | |||
| 582 | optimizer_class = bnb.optim.AdamW8bit | ||
| 583 | else: | ||
| 584 | optimizer_class = torch.optim.AdamW | ||
| 585 | |||
| 586 | # Initialize the optimizer | ||
| 587 | optimizer = optimizer_class( | ||
| 588 | text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings | ||
| 589 | lr=args.learning_rate, | ||
| 590 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 591 | weight_decay=args.adam_weight_decay, | ||
| 592 | eps=args.adam_epsilon, | ||
| 593 | ) | ||
| 594 | |||
| 595 | noise_scheduler = DDPMScheduler( | ||
| 596 | beta_start=0.00085, | ||
| 597 | beta_end=0.012, | ||
| 598 | beta_schedule="scaled_linear", | ||
| 599 | num_train_timesteps=1000 | ||
| 600 | ) | ||
| 601 | |||
| 602 | def collate_fn(examples): | ||
| 603 | prompts = [example["prompts"] for example in examples] | ||
| 604 | nprompts = [example["nprompts"] for example in examples] | ||
| 605 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
| 606 | pixel_values = [example["instance_images"] for example in examples] | ||
| 607 | |||
| 608 | # concat class and instance examples for prior preservation | ||
| 609 | if args.use_class_images and "class_prompt_ids" in examples[0]: | ||
| 610 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
| 611 | pixel_values += [example["class_images"] for example in examples] | ||
| 612 | |||
| 613 | pixel_values = torch.stack(pixel_values) | ||
| 614 | pixel_values = pixel_values.to(dtype=torch.float32, memory_format=torch.contiguous_format) | ||
| 615 | |||
| 616 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | ||
| 617 | |||
| 618 | batch = { | ||
| 619 | "prompts": prompts, | ||
| 620 | "nprompts": nprompts, | ||
| 621 | "input_ids": input_ids, | ||
| 622 | "pixel_values": pixel_values, | ||
| 623 | } | ||
| 624 | return batch | ||
| 625 | |||
| 626 | datamodule = CSVDataModule( | ||
| 627 | data_file=args.train_data_file, | ||
| 628 | batch_size=args.train_batch_size, | ||
| 629 | tokenizer=tokenizer, | ||
| 630 | instance_identifier=placeholder_token, | ||
| 631 | class_identifier=args.initializer_token if args.use_class_images else None, | ||
| 632 | class_subdir="ti_cls", | ||
| 633 | size=args.resolution, | ||
| 634 | repeats=args.repeats, | ||
| 635 | center_crop=args.center_crop, | ||
| 636 | valid_set_size=args.sample_batch_size*args.sample_batches, | ||
| 637 | collate_fn=collate_fn | ||
| 638 | ) | ||
| 639 | |||
| 640 | datamodule.prepare_data() | ||
| 641 | datamodule.setup() | ||
| 642 | |||
| 643 | if args.use_class_images: | ||
| 644 | missing_data = [item for item in datamodule.data if not item[1].exists()] | ||
| 645 | |||
| 646 | if len(missing_data) != 0: | ||
| 647 | batched_data = [missing_data[i:i+args.sample_batch_size] | ||
| 648 | for i in range(0, len(missing_data), args.sample_batch_size)] | ||
| 649 | |||
| 650 | scheduler = EulerAScheduler( | ||
| 651 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 652 | ) | ||
| 653 | |||
| 654 | pipeline = VlpnStableDiffusion( | ||
| 655 | text_encoder=text_encoder, | ||
| 656 | vae=vae, | ||
| 657 | unet=unet, | ||
| 658 | tokenizer=tokenizer, | ||
| 659 | scheduler=scheduler, | ||
| 660 | ).to(accelerator.device) | ||
| 661 | pipeline.enable_attention_slicing() | ||
| 662 | |||
| 663 | for batch in batched_data: | ||
| 664 | image_name = [p[1] for p in batch] | ||
| 665 | prompt = [p[2].format(args.initializer_token) for p in batch] | ||
| 666 | nprompt = [p[3] for p in batch] | ||
| 667 | |||
| 668 | with accelerator.autocast(): | ||
| 669 | images = pipeline( | ||
| 670 | prompt=prompt, | ||
| 671 | negative_prompt=nprompt, | ||
| 672 | num_inference_steps=args.sample_steps | ||
| 673 | ).images | ||
| 674 | |||
| 675 | for i, image in enumerate(images): | ||
| 676 | image.save(image_name[i]) | ||
| 677 | |||
| 678 | del pipeline | ||
| 679 | |||
| 680 | if torch.cuda.is_available(): | ||
| 681 | torch.cuda.empty_cache() | ||
| 682 | |||
| 683 | train_dataloader = datamodule.train_dataloader() | ||
| 684 | val_dataloader = datamodule.val_dataloader() | ||
| 685 | |||
| 686 | checkpointer = Checkpointer( | ||
| 687 | datamodule=datamodule, | ||
| 688 | accelerator=accelerator, | ||
| 689 | vae=vae, | ||
| 690 | unet=unet, | ||
| 691 | tokenizer=tokenizer, | ||
| 692 | placeholder_token=args.placeholder_token, | ||
| 693 | placeholder_token_ids=placeholder_token_ids, | ||
| 694 | output_dir=basepath, | ||
| 695 | sample_image_size=args.sample_image_size, | ||
| 696 | sample_batch_size=args.sample_batch_size, | ||
| 697 | sample_batches=args.sample_batches, | ||
| 698 | seed=args.seed | ||
| 699 | ) | ||
| 700 | |||
| 701 | # Scheduler and math around the number of training steps. | ||
| 702 | overrode_max_train_steps = False | ||
| 703 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 704 | if args.max_train_steps is None: | ||
| 705 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 706 | overrode_max_train_steps = True | ||
| 707 | |||
| 708 | lr_scheduler = get_scheduler( | ||
| 709 | args.lr_scheduler, | ||
| 710 | optimizer=optimizer, | ||
| 711 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
| 712 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 713 | ) | ||
| 714 | |||
| 715 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 716 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 717 | ) | ||
| 718 | |||
| 719 | # Move vae and unet to device | ||
| 720 | vae.to(accelerator.device) | ||
| 721 | unet.to(accelerator.device) | ||
| 722 | |||
| 723 | # Keep vae and unet in eval mode as we don't train these | ||
| 724 | vae.eval() | ||
| 725 | unet.eval() | ||
| 726 | |||
| 727 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 728 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 729 | if overrode_max_train_steps: | ||
| 730 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 731 | |||
| 732 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 733 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 734 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 735 | |||
| 736 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 737 | # The trackers initializes automatically on the main process. | ||
| 738 | if accelerator.is_main_process: | ||
| 739 | accelerator.init_trackers("textual_inversion", config=vars(args)) | ||
| 740 | |||
| 741 | # Train! | ||
| 742 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 743 | |||
| 744 | logger.info("***** Running training *****") | ||
| 745 | logger.info(f" Num Epochs = {num_epochs}") | ||
| 746 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 747 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 748 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 749 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 750 | # Only show the progress bar once on each machine. | ||
| 751 | |||
| 752 | global_step = 0 | ||
| 753 | min_val_loss = np.inf | ||
| 754 | |||
| 755 | if accelerator.is_main_process: | ||
| 756 | checkpointer.save_samples( | ||
| 757 | 0, | ||
| 758 | text_encoder, | ||
| 759 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 760 | |||
| 761 | local_progress_bar = tqdm(range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 762 | disable=not accelerator.is_local_main_process) | ||
| 763 | local_progress_bar.set_description("Batch X out of Y") | ||
| 764 | |||
| 765 | global_progress_bar = tqdm(range(args.max_train_steps + val_steps), disable=not accelerator.is_local_main_process) | ||
| 766 | global_progress_bar.set_description("Total progress") | ||
| 767 | |||
| 768 | try: | ||
| 769 | for epoch in range(num_epochs): | ||
| 770 | local_progress_bar.set_description(f"Batch {epoch + 1} out of {num_epochs}") | ||
| 771 | local_progress_bar.reset() | ||
| 772 | |||
| 773 | text_encoder.train() | ||
| 774 | train_loss = 0.0 | ||
| 775 | |||
| 776 | for step, batch in enumerate(train_dataloader): | ||
| 777 | with accelerator.accumulate(text_encoder): | ||
| 778 | # Convert images to latent space | ||
| 779 | with torch.no_grad(): | ||
| 780 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 781 | latents = latents * 0.18215 | ||
| 782 | |||
| 783 | # Sample noise that we'll add to the latents | ||
| 784 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 785 | bsz = latents.shape[0] | ||
| 786 | # Sample a random timestep for each image | ||
| 787 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 788 | (bsz,), device=latents.device) | ||
| 789 | timesteps = timesteps.long() | ||
| 790 | |||
| 791 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 792 | # (this is the forward diffusion process) | ||
| 793 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 794 | |||
| 795 | # Get the text embedding for conditioning | ||
| 796 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 797 | |||
| 798 | # Predict the noise residual | ||
| 799 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 800 | |||
| 801 | if args.use_class_images: | ||
| 802 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | ||
| 803 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | ||
| 804 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
| 805 | |||
| 806 | # Compute instance loss | ||
| 807 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 808 | |||
| 809 | # Compute prior loss | ||
| 810 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() | ||
| 811 | |||
| 812 | # Add the prior loss to the instance loss. | ||
| 813 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 814 | else: | ||
| 815 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 816 | |||
| 817 | accelerator.backward(loss) | ||
| 818 | |||
| 819 | # Zero out the gradients for all token embeddings except the newly added | ||
| 820 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
| 821 | if accelerator.num_processes > 1: | ||
| 822 | grads = text_encoder.module.get_input_embeddings().weight.grad | ||
| 823 | else: | ||
| 824 | grads = text_encoder.get_input_embeddings().weight.grad | ||
| 825 | # Get the index for tokens that we want to zero the grads for | ||
| 826 | grad_mask = torch.arange(len(tokenizer)) != placeholder_token_ids[0] | ||
| 827 | for i in range(1, len(placeholder_token_ids)): | ||
| 828 | grad_mask = grad_mask & (torch.arange(len(tokenizer)) != placeholder_token_ids[i]) | ||
| 829 | grads.data[grad_mask, :] = grads.data[grad_mask, :].fill_(0) | ||
| 830 | |||
| 831 | optimizer.step() | ||
| 832 | if not accelerator.optimizer_step_was_skipped: | ||
| 833 | lr_scheduler.step() | ||
| 834 | optimizer.zero_grad(set_to_none=True) | ||
| 835 | |||
| 836 | loss = loss.detach().item() | ||
| 837 | train_loss += loss | ||
| 838 | |||
| 839 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 840 | if accelerator.sync_gradients: | ||
| 841 | local_progress_bar.update(1) | ||
| 842 | global_progress_bar.update(1) | ||
| 843 | |||
| 844 | global_step += 1 | ||
| 845 | |||
| 846 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
| 847 | local_progress_bar.clear() | ||
| 848 | global_progress_bar.clear() | ||
| 849 | |||
| 850 | checkpointer.checkpoint(global_step + global_step_offset, "training", text_encoder) | ||
| 851 | save_resume_file(basepath, args, { | ||
| 852 | "global_step": global_step + global_step_offset, | ||
| 853 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 854 | }) | ||
| 855 | |||
| 856 | logs = {"mode": "training", "loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | ||
| 857 | local_progress_bar.set_postfix(**logs) | ||
| 858 | |||
| 859 | if global_step >= args.max_train_steps: | ||
| 860 | break | ||
| 861 | |||
| 862 | train_loss /= len(train_dataloader) | ||
| 863 | |||
| 864 | accelerator.wait_for_everyone() | ||
| 865 | |||
| 866 | text_encoder.eval() | ||
| 867 | val_loss = 0.0 | ||
| 868 | |||
| 869 | for step, batch in enumerate(val_dataloader): | ||
| 870 | with torch.no_grad(): | ||
| 871 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 872 | latents = latents * 0.18215 | ||
| 873 | |||
| 874 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 875 | bsz = latents.shape[0] | ||
| 876 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 877 | (bsz,), device=latents.device) | ||
| 878 | timesteps = timesteps.long() | ||
| 879 | |||
| 880 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 881 | |||
| 882 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 883 | |||
| 884 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 885 | |||
| 886 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
| 887 | |||
| 888 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 889 | |||
| 890 | loss = loss.detach().item() | ||
| 891 | val_loss += loss | ||
| 892 | |||
| 893 | if accelerator.sync_gradients: | ||
| 894 | local_progress_bar.update(1) | ||
| 895 | global_progress_bar.update(1) | ||
| 896 | |||
| 897 | logs = {"mode": "validation", "loss": loss} | ||
| 898 | local_progress_bar.set_postfix(**logs) | ||
| 899 | |||
| 900 | val_loss /= len(val_dataloader) | ||
| 901 | |||
| 902 | accelerator.log({"train/loss": train_loss, "val/loss": val_loss}, step=global_step) | ||
| 903 | |||
| 904 | local_progress_bar.clear() | ||
| 905 | global_progress_bar.clear() | ||
| 906 | |||
| 907 | if min_val_loss > val_loss: | ||
| 908 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
| 909 | checkpointer.checkpoint(global_step + global_step_offset, "milestone", text_encoder) | ||
| 910 | min_val_loss = val_loss | ||
| 911 | |||
| 912 | if accelerator.is_main_process: | ||
| 913 | checkpointer.save_samples( | ||
| 914 | global_step + global_step_offset, | ||
| 915 | text_encoder, | ||
| 916 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 917 | |||
| 918 | # Create the pipeline using using the trained modules and save it. | ||
| 919 | if accelerator.is_main_process: | ||
| 920 | print("Finished! Saving final checkpoint and resume state.") | ||
| 921 | checkpointer.checkpoint( | ||
| 922 | global_step + global_step_offset, | ||
| 923 | "end", | ||
| 924 | text_encoder, | ||
| 925 | path=f"{basepath}/learned_embeds.bin" | ||
| 926 | ) | ||
| 927 | |||
| 928 | save_resume_file(basepath, args, { | ||
| 929 | "global_step": global_step + global_step_offset, | ||
| 930 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 931 | }) | ||
| 932 | |||
| 933 | accelerator.end_training() | ||
| 934 | |||
| 935 | except KeyboardInterrupt: | ||
| 936 | if accelerator.is_main_process: | ||
| 937 | print("Interrupted, saving checkpoint and resume state...") | ||
| 938 | checkpointer.checkpoint(global_step + global_step_offset, "end", text_encoder) | ||
| 939 | save_resume_file(basepath, args, { | ||
| 940 | "global_step": global_step + global_step_offset, | ||
| 941 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 942 | }) | ||
| 943 | accelerator.end_training() | ||
| 944 | quit() | ||
| 945 | |||
| 946 | |||
| 947 | if __name__ == "__main__": | ||
| 948 | main() | ||
diff --git a/textual_inversion.py b/textual_inversion.py index d842288..7919ebd 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
| @@ -230,7 +230,7 @@ def parse_args(): | |||
| 230 | parser.add_argument( | 230 | parser.add_argument( |
| 231 | "--sample_steps", | 231 | "--sample_steps", |
| 232 | type=int, | 232 | type=int, |
| 233 | default=40, | 233 | default=30, |
| 234 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | 234 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", |
| 235 | ) | 235 | ) |
| 236 | parser.add_argument( | 236 | parser.add_argument( |
| @@ -329,7 +329,7 @@ class Checkpointer: | |||
| 329 | self.placeholder_token_id = placeholder_token_id | 329 | self.placeholder_token_id = placeholder_token_id |
| 330 | self.output_dir = output_dir | 330 | self.output_dir = output_dir |
| 331 | self.sample_image_size = sample_image_size | 331 | self.sample_image_size = sample_image_size |
| 332 | self.seed = seed | 332 | self.seed = seed or torch.random.seed() |
| 333 | self.sample_batches = sample_batches | 333 | self.sample_batches = sample_batches |
| 334 | self.sample_batch_size = sample_batch_size | 334 | self.sample_batch_size = sample_batch_size |
| 335 | 335 | ||
| @@ -481,9 +481,9 @@ def main(): | |||
| 481 | # Convert the initializer_token, placeholder_token to ids | 481 | # Convert the initializer_token, placeholder_token to ids |
| 482 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | 482 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) |
| 483 | # Check if initializer_token is a single token or a sequence of tokens | 483 | # Check if initializer_token is a single token or a sequence of tokens |
| 484 | if args.vectors_per_token % len(initializer_token_ids) != 0: | 484 | if len(initializer_token_ids) > 1: |
| 485 | raise ValueError( | 485 | raise ValueError( |
| 486 | f"vectors_per_token ({args.vectors_per_token}) must be divisible by initializer token ({len(initializer_token_ids)}).") | 486 | f"initializer_token_ids must not have more than 1 vector, but it's {len(initializer_token_ids)}.") |
| 487 | 487 | ||
| 488 | initializer_token_ids = torch.tensor(initializer_token_ids) | 488 | initializer_token_ids = torch.tensor(initializer_token_ids) |
| 489 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | 489 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
| @@ -590,7 +590,7 @@ def main(): | |||
| 590 | sample_image_size=args.sample_image_size, | 590 | sample_image_size=args.sample_image_size, |
| 591 | sample_batch_size=args.sample_batch_size, | 591 | sample_batch_size=args.sample_batch_size, |
| 592 | sample_batches=args.sample_batches, | 592 | sample_batches=args.sample_batches, |
| 593 | seed=args.seed or torch.random.seed() | 593 | seed=args.seed |
| 594 | ) | 594 | ) |
| 595 | 595 | ||
| 596 | # Scheduler and math around the number of training steps. | 596 | # Scheduler and math around the number of training steps. |
| @@ -620,8 +620,7 @@ def main(): | |||
| 620 | unet.eval() | 620 | unet.eval() |
| 621 | 621 | ||
| 622 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | 622 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. |
| 623 | num_update_steps_per_epoch = math.ceil( | 623 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
| 624 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
| 625 | if overrode_max_train_steps: | 624 | if overrode_max_train_steps: |
| 626 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | 625 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
| 627 | 626 | ||
