diff options
author | Volpeon <git@volpeon.ink> | 2022-10-13 09:45:27 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-10-13 09:45:27 +0200 |
commit | db0996c299fdd559ebf9cd48f9dbe47474ed7b07 (patch) | |
tree | 0d306c661ed5629e7d69566a82d588aca5ed86a9 | |
parent | Various updates (diff) | |
download | textual-inversion-diff-db0996c299fdd559ebf9cd48f9dbe47474ed7b07.tar.gz textual-inversion-diff-db0996c299fdd559ebf9cd48f9dbe47474ed7b07.tar.bz2 textual-inversion-diff-db0996c299fdd559ebf9cd48f9dbe47474ed7b07.zip |
Added TI+Dreambooth training
-rw-r--r-- | dreambooth.py | 15 | ||||
-rw-r--r-- | dreambooth_plus.py | 939 | ||||
-rw-r--r-- | infer.py | 8 | ||||
-rw-r--r-- | textual_inversion.py | 11 |
4 files changed, 961 insertions, 12 deletions
diff --git a/dreambooth.py b/dreambooth.py index 775aea2..699313e 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -129,7 +129,7 @@ def parse_args(): | |||
129 | parser.add_argument( | 129 | parser.add_argument( |
130 | "--learning_rate", | 130 | "--learning_rate", |
131 | type=float, | 131 | type=float, |
132 | default=1e-6, | 132 | default=5e-6, |
133 | help="Initial learning rate (after the potential warmup period) to use.", | 133 | help="Initial learning rate (after the potential warmup period) to use.", |
134 | ) | 134 | ) |
135 | parser.add_argument( | 135 | parser.add_argument( |
@@ -167,7 +167,7 @@ def parse_args(): | |||
167 | parser.add_argument( | 167 | parser.add_argument( |
168 | "--ema_power", | 168 | "--ema_power", |
169 | type=float, | 169 | type=float, |
170 | default=7 / 8 | 170 | default=6 / 7 |
171 | ) | 171 | ) |
172 | parser.add_argument( | 172 | parser.add_argument( |
173 | "--ema_max_decay", | 173 | "--ema_max_decay", |
@@ -270,6 +270,11 @@ def parse_args(): | |||
270 | help="Max gradient norm." | 270 | help="Max gradient norm." |
271 | ) | 271 | ) |
272 | parser.add_argument( | 272 | parser.add_argument( |
273 | "--noise_timesteps", | ||
274 | type=int, | ||
275 | default=1000, | ||
276 | ) | ||
277 | parser.add_argument( | ||
273 | "--config", | 278 | "--config", |
274 | type=str, | 279 | type=str, |
275 | default=None, | 280 | default=None, |
@@ -480,7 +485,8 @@ def main(): | |||
480 | unet, | 485 | unet, |
481 | inv_gamma=args.ema_inv_gamma, | 486 | inv_gamma=args.ema_inv_gamma, |
482 | power=args.ema_power, | 487 | power=args.ema_power, |
483 | max_value=args.ema_max_decay | 488 | max_value=args.ema_max_decay, |
489 | device=accelerator.device | ||
484 | ) if args.use_ema else None | 490 | ) if args.use_ema else None |
485 | 491 | ||
486 | if args.gradient_checkpointing: | 492 | if args.gradient_checkpointing: |
@@ -523,7 +529,7 @@ def main(): | |||
523 | beta_start=0.00085, | 529 | beta_start=0.00085, |
524 | beta_end=0.012, | 530 | beta_end=0.012, |
525 | beta_schedule="scaled_linear", | 531 | beta_schedule="scaled_linear", |
526 | num_train_timesteps=1000 | 532 | num_train_timesteps=args.noise_timesteps |
527 | ) | 533 | ) |
528 | 534 | ||
529 | def collate_fn(examples): | 535 | def collate_fn(examples): |
@@ -632,7 +638,6 @@ def main(): | |||
632 | # Move text_encoder and vae to device | 638 | # Move text_encoder and vae to device |
633 | text_encoder.to(accelerator.device) | 639 | text_encoder.to(accelerator.device) |
634 | vae.to(accelerator.device) | 640 | vae.to(accelerator.device) |
635 | ema_unet.averaged_model.to(accelerator.device) | ||
636 | 641 | ||
637 | # Keep text_encoder and vae in eval mode as we don't train these | 642 | # Keep text_encoder and vae in eval mode as we don't train these |
638 | text_encoder.eval() | 643 | text_encoder.eval() |
diff --git a/dreambooth_plus.py b/dreambooth_plus.py new file mode 100644 index 0000000..9e482b3 --- /dev/null +++ b/dreambooth_plus.py | |||
@@ -0,0 +1,939 @@ | |||
1 | import argparse | ||
2 | import itertools | ||
3 | import math | ||
4 | import os | ||
5 | import datetime | ||
6 | import logging | ||
7 | import json | ||
8 | from pathlib import Path | ||
9 | |||
10 | import numpy as np | ||
11 | import torch | ||
12 | import torch.nn.functional as F | ||
13 | import torch.utils.checkpoint | ||
14 | |||
15 | from accelerate import Accelerator | ||
16 | from accelerate.logging import get_logger | ||
17 | from accelerate.utils import LoggerType, set_seed | ||
18 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel | ||
19 | from diffusers.optimization import get_scheduler | ||
20 | from diffusers.training_utils import EMAModel | ||
21 | from PIL import Image | ||
22 | from tqdm.auto import tqdm | ||
23 | from transformers import CLIPTextModel, CLIPTokenizer | ||
24 | from slugify import slugify | ||
25 | |||
26 | from schedulers.scheduling_euler_a import EulerAScheduler | ||
27 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
28 | from data.csv import CSVDataModule | ||
29 | |||
30 | logger = get_logger(__name__) | ||
31 | |||
32 | |||
33 | torch.backends.cuda.matmul.allow_tf32 = True | ||
34 | |||
35 | |||
36 | def parse_args(): | ||
37 | parser = argparse.ArgumentParser( | ||
38 | description="Simple example of a training script." | ||
39 | ) | ||
40 | parser.add_argument( | ||
41 | "--pretrained_model_name_or_path", | ||
42 | type=str, | ||
43 | default=None, | ||
44 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
45 | ) | ||
46 | parser.add_argument( | ||
47 | "--tokenizer_name", | ||
48 | type=str, | ||
49 | default=None, | ||
50 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
51 | ) | ||
52 | parser.add_argument( | ||
53 | "--train_data_file", | ||
54 | type=str, | ||
55 | default=None, | ||
56 | help="A CSV file containing the training data." | ||
57 | ) | ||
58 | parser.add_argument( | ||
59 | "--placeholder_token", | ||
60 | type=str, | ||
61 | default=None, | ||
62 | help="A token to use as a placeholder for the concept.", | ||
63 | ) | ||
64 | parser.add_argument( | ||
65 | "--initializer_token", | ||
66 | type=str, | ||
67 | default=None, | ||
68 | help="A token to use as initializer word." | ||
69 | ) | ||
70 | parser.add_argument( | ||
71 | "--num_class_images", | ||
72 | type=int, | ||
73 | default=400, | ||
74 | help="How many class images to generate per training image." | ||
75 | ) | ||
76 | parser.add_argument( | ||
77 | "--repeats", | ||
78 | type=int, | ||
79 | default=1, | ||
80 | help="How many times to repeat the training data." | ||
81 | ) | ||
82 | parser.add_argument( | ||
83 | "--output_dir", | ||
84 | type=str, | ||
85 | default="output/dreambooth-plus", | ||
86 | help="The output directory where the model predictions and checkpoints will be written.", | ||
87 | ) | ||
88 | parser.add_argument( | ||
89 | "--seed", | ||
90 | type=int, | ||
91 | default=None, | ||
92 | help="A seed for reproducible training.") | ||
93 | parser.add_argument( | ||
94 | "--resolution", | ||
95 | type=int, | ||
96 | default=512, | ||
97 | help=( | ||
98 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
99 | " resolution" | ||
100 | ), | ||
101 | ) | ||
102 | parser.add_argument( | ||
103 | "--center_crop", | ||
104 | action="store_true", | ||
105 | help="Whether to center crop images before resizing to resolution" | ||
106 | ) | ||
107 | parser.add_argument( | ||
108 | "--num_train_epochs", | ||
109 | type=int, | ||
110 | default=100 | ||
111 | ) | ||
112 | parser.add_argument( | ||
113 | "--max_train_steps", | ||
114 | type=int, | ||
115 | default=3000, | ||
116 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
117 | ) | ||
118 | parser.add_argument( | ||
119 | "--gradient_accumulation_steps", | ||
120 | type=int, | ||
121 | default=1, | ||
122 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
123 | ) | ||
124 | parser.add_argument( | ||
125 | "--gradient_checkpointing", | ||
126 | action="store_true", | ||
127 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
128 | ) | ||
129 | parser.add_argument( | ||
130 | "--learning_rate_unet", | ||
131 | type=float, | ||
132 | default=1e-5, | ||
133 | help="Initial learning rate (after the potential warmup period) to use.", | ||
134 | ) | ||
135 | parser.add_argument( | ||
136 | "--learning_rate_text", | ||
137 | type=float, | ||
138 | default=1e-4, | ||
139 | help="Initial learning rate (after the potential warmup period) to use.", | ||
140 | ) | ||
141 | parser.add_argument( | ||
142 | "--scale_lr", | ||
143 | action="store_true", | ||
144 | default=True, | ||
145 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
146 | ) | ||
147 | parser.add_argument( | ||
148 | "--lr_scheduler", | ||
149 | type=str, | ||
150 | default="cosine", | ||
151 | help=( | ||
152 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
153 | ' "constant", "constant_with_warmup"]' | ||
154 | ), | ||
155 | ) | ||
156 | parser.add_argument( | ||
157 | "--lr_warmup_steps", | ||
158 | type=int, | ||
159 | default=500, | ||
160 | help="Number of steps for the warmup in the lr scheduler." | ||
161 | ) | ||
162 | parser.add_argument( | ||
163 | "--use_ema", | ||
164 | action="store_true", | ||
165 | default=True, | ||
166 | help="Whether to use EMA model." | ||
167 | ) | ||
168 | parser.add_argument( | ||
169 | "--ema_inv_gamma", | ||
170 | type=float, | ||
171 | default=1.0 | ||
172 | ) | ||
173 | parser.add_argument( | ||
174 | "--ema_power", | ||
175 | type=float, | ||
176 | default=6 / 7 | ||
177 | ) | ||
178 | parser.add_argument( | ||
179 | "--ema_max_decay", | ||
180 | type=float, | ||
181 | default=0.9999 | ||
182 | ) | ||
183 | parser.add_argument( | ||
184 | "--use_8bit_adam", | ||
185 | action="store_true", | ||
186 | default=True, | ||
187 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
188 | ) | ||
189 | parser.add_argument( | ||
190 | "--adam_beta1", | ||
191 | type=float, | ||
192 | default=0.9, | ||
193 | help="The beta1 parameter for the Adam optimizer." | ||
194 | ) | ||
195 | parser.add_argument( | ||
196 | "--adam_beta2", | ||
197 | type=float, | ||
198 | default=0.999, | ||
199 | help="The beta2 parameter for the Adam optimizer." | ||
200 | ) | ||
201 | parser.add_argument( | ||
202 | "--adam_weight_decay", | ||
203 | type=float, | ||
204 | default=1e-2, | ||
205 | help="Weight decay to use." | ||
206 | ) | ||
207 | parser.add_argument( | ||
208 | "--adam_epsilon", | ||
209 | type=float, | ||
210 | default=1e-08, | ||
211 | help="Epsilon value for the Adam optimizer" | ||
212 | ) | ||
213 | parser.add_argument( | ||
214 | "--mixed_precision", | ||
215 | type=str, | ||
216 | default="no", | ||
217 | choices=["no", "fp16", "bf16"], | ||
218 | help=( | ||
219 | "Whether to use mixed precision. Choose" | ||
220 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
221 | "and an Nvidia Ampere GPU." | ||
222 | ), | ||
223 | ) | ||
224 | parser.add_argument( | ||
225 | "--local_rank", | ||
226 | type=int, | ||
227 | default=-1, | ||
228 | help="For distributed training: local_rank" | ||
229 | ) | ||
230 | parser.add_argument( | ||
231 | "--sample_frequency", | ||
232 | type=int, | ||
233 | default=100, | ||
234 | help="How often to save a checkpoint and sample image", | ||
235 | ) | ||
236 | parser.add_argument( | ||
237 | "--sample_image_size", | ||
238 | type=int, | ||
239 | default=512, | ||
240 | help="Size of sample images", | ||
241 | ) | ||
242 | parser.add_argument( | ||
243 | "--sample_batches", | ||
244 | type=int, | ||
245 | default=1, | ||
246 | help="Number of sample batches to generate per checkpoint", | ||
247 | ) | ||
248 | parser.add_argument( | ||
249 | "--sample_batch_size", | ||
250 | type=int, | ||
251 | default=1, | ||
252 | help="Number of samples to generate per batch", | ||
253 | ) | ||
254 | parser.add_argument( | ||
255 | "--train_batch_size", | ||
256 | type=int, | ||
257 | default=1, | ||
258 | help="Batch size (per device) for the training dataloader." | ||
259 | ) | ||
260 | parser.add_argument( | ||
261 | "--sample_steps", | ||
262 | type=int, | ||
263 | default=30, | ||
264 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
265 | ) | ||
266 | parser.add_argument( | ||
267 | "--prior_loss_weight", | ||
268 | type=float, | ||
269 | default=1.0, | ||
270 | help="The weight of prior preservation loss." | ||
271 | ) | ||
272 | parser.add_argument( | ||
273 | "--max_grad_norm", | ||
274 | default=1.0, | ||
275 | type=float, | ||
276 | help="Max gradient norm." | ||
277 | ) | ||
278 | parser.add_argument( | ||
279 | "--noise_timesteps", | ||
280 | type=int, | ||
281 | default=1000, | ||
282 | ) | ||
283 | parser.add_argument( | ||
284 | "--config", | ||
285 | type=str, | ||
286 | default=None, | ||
287 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
288 | ) | ||
289 | |||
290 | args = parser.parse_args() | ||
291 | if args.config is not None: | ||
292 | with open(args.config, 'rt') as f: | ||
293 | args = parser.parse_args( | ||
294 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
295 | |||
296 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
297 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
298 | args.local_rank = env_local_rank | ||
299 | |||
300 | if args.train_data_file is None: | ||
301 | raise ValueError("You must specify --train_data_file") | ||
302 | |||
303 | if args.pretrained_model_name_or_path is None: | ||
304 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
305 | |||
306 | if args.placeholder_token is None: | ||
307 | raise ValueError("You must specify --placeholder_token") | ||
308 | |||
309 | if args.initializer_token is None: | ||
310 | raise ValueError("You must specify --initializer_token") | ||
311 | |||
312 | if args.output_dir is None: | ||
313 | raise ValueError("You must specify --output_dir") | ||
314 | |||
315 | return args | ||
316 | |||
317 | |||
318 | def freeze_params(params): | ||
319 | for param in params: | ||
320 | param.requires_grad = False | ||
321 | |||
322 | |||
323 | def make_grid(images, rows, cols): | ||
324 | w, h = images[0].size | ||
325 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
326 | for i, image in enumerate(images): | ||
327 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
328 | return grid | ||
329 | |||
330 | |||
331 | class Checkpointer: | ||
332 | def __init__( | ||
333 | self, | ||
334 | datamodule, | ||
335 | accelerator, | ||
336 | vae, | ||
337 | unet, | ||
338 | ema_unet, | ||
339 | tokenizer, | ||
340 | text_encoder, | ||
341 | placeholder_token, | ||
342 | placeholder_token_id, | ||
343 | output_dir: Path, | ||
344 | sample_image_size, | ||
345 | sample_batches, | ||
346 | sample_batch_size, | ||
347 | seed | ||
348 | ): | ||
349 | self.datamodule = datamodule | ||
350 | self.accelerator = accelerator | ||
351 | self.vae = vae | ||
352 | self.unet = unet | ||
353 | self.ema_unet = ema_unet | ||
354 | self.tokenizer = tokenizer | ||
355 | self.text_encoder = text_encoder | ||
356 | self.placeholder_token = placeholder_token | ||
357 | self.placeholder_token_id = placeholder_token_id | ||
358 | self.output_dir = output_dir | ||
359 | self.sample_image_size = sample_image_size | ||
360 | self.seed = seed or torch.random.seed() | ||
361 | self.sample_batches = sample_batches | ||
362 | self.sample_batch_size = sample_batch_size | ||
363 | |||
364 | @torch.no_grad() | ||
365 | def checkpoint(self): | ||
366 | print("Saving model...") | ||
367 | |||
368 | unwrapped_unet = self.accelerator.unwrap_model( | ||
369 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
370 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
371 | pipeline = VlpnStableDiffusion( | ||
372 | text_encoder=unwrapped_text_encoder, | ||
373 | vae=self.vae, | ||
374 | unet=unwrapped_unet, | ||
375 | tokenizer=self.tokenizer, | ||
376 | scheduler=PNDMScheduler( | ||
377 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
378 | ), | ||
379 | ) | ||
380 | pipeline.save_pretrained(self.output_dir.joinpath("model")) | ||
381 | |||
382 | del unwrapped_unet | ||
383 | del unwrapped_text_encoder | ||
384 | del pipeline | ||
385 | |||
386 | if torch.cuda.is_available(): | ||
387 | torch.cuda.empty_cache() | ||
388 | |||
389 | @torch.no_grad() | ||
390 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | ||
391 | samples_path = Path(self.output_dir).joinpath("samples") | ||
392 | |||
393 | unwrapped_unet = self.accelerator.unwrap_model( | ||
394 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
395 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
396 | scheduler = EulerAScheduler( | ||
397 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
398 | ) | ||
399 | |||
400 | # Save a sample image | ||
401 | pipeline = VlpnStableDiffusion( | ||
402 | text_encoder=unwrapped_text_encoder, | ||
403 | vae=self.vae, | ||
404 | unet=unwrapped_unet, | ||
405 | tokenizer=self.tokenizer, | ||
406 | scheduler=scheduler, | ||
407 | ).to(self.accelerator.device) | ||
408 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
409 | |||
410 | train_data = self.datamodule.train_dataloader() | ||
411 | val_data = self.datamodule.val_dataloader() | ||
412 | |||
413 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
414 | stable_latents = torch.randn( | ||
415 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
416 | device=pipeline.device, | ||
417 | generator=generator, | ||
418 | ) | ||
419 | |||
420 | with torch.inference_mode(): | ||
421 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
422 | all_samples = [] | ||
423 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | ||
424 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
425 | |||
426 | data_enum = enumerate(data) | ||
427 | |||
428 | for i in range(self.sample_batches): | ||
429 | batches = [batch for j, batch in data_enum if j * data.batch_size < self.sample_batch_size] | ||
430 | prompt = [prompt.format(self.placeholder_token) | ||
431 | for batch in batches for prompt in batch["prompts"]][:self.sample_batch_size] | ||
432 | nprompt = [prompt for batch in batches for prompt in batch["nprompts"]][:self.sample_batch_size] | ||
433 | |||
434 | samples = pipeline( | ||
435 | prompt=prompt, | ||
436 | negative_prompt=nprompt, | ||
437 | height=self.sample_image_size, | ||
438 | width=self.sample_image_size, | ||
439 | latents=latents[:len(prompt)] if latents is not None else None, | ||
440 | generator=generator if latents is not None else None, | ||
441 | guidance_scale=guidance_scale, | ||
442 | eta=eta, | ||
443 | num_inference_steps=num_inference_steps, | ||
444 | output_type='pil' | ||
445 | )["sample"] | ||
446 | |||
447 | all_samples += samples | ||
448 | |||
449 | del samples | ||
450 | |||
451 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
452 | image_grid.save(file_path) | ||
453 | |||
454 | del all_samples | ||
455 | del image_grid | ||
456 | |||
457 | del unwrapped_unet | ||
458 | del unwrapped_text_encoder | ||
459 | del scheduler | ||
460 | del pipeline | ||
461 | del generator | ||
462 | del stable_latents | ||
463 | |||
464 | if torch.cuda.is_available(): | ||
465 | torch.cuda.empty_cache() | ||
466 | |||
467 | |||
468 | def main(): | ||
469 | args = parse_args() | ||
470 | |||
471 | global_step_offset = 0 | ||
472 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
473 | basepath = Path(args.output_dir).joinpath(slugify(args.placeholder_token), now) | ||
474 | basepath.mkdir(parents=True, exist_ok=True) | ||
475 | |||
476 | accelerator = Accelerator( | ||
477 | log_with=LoggerType.TENSORBOARD, | ||
478 | logging_dir=f"{basepath}", | ||
479 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
480 | mixed_precision=args.mixed_precision | ||
481 | ) | ||
482 | |||
483 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
484 | |||
485 | # If passed along, set the training seed now. | ||
486 | if args.seed is not None: | ||
487 | set_seed(args.seed) | ||
488 | |||
489 | # Load the tokenizer and add the placeholder token as a additional special token | ||
490 | if args.tokenizer_name: | ||
491 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
492 | elif args.pretrained_model_name_or_path: | ||
493 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
494 | |||
495 | # Add the placeholder token in tokenizer | ||
496 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
497 | if num_added_tokens == 0: | ||
498 | raise ValueError( | ||
499 | f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" | ||
500 | " `placeholder_token` that is not already in the tokenizer." | ||
501 | ) | ||
502 | |||
503 | # Convert the initializer_token, placeholder_token to ids | ||
504 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
505 | # Check if initializer_token is a single token or a sequence of tokens | ||
506 | if len(initializer_token_ids) > 1: | ||
507 | raise ValueError( | ||
508 | f"initializer_token_ids must not have more than 1 vector, but it's {len(initializer_token_ids)}.") | ||
509 | |||
510 | initializer_token_ids = torch.tensor(initializer_token_ids) | ||
511 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
512 | |||
513 | # Load models and create wrapper for stable diffusion | ||
514 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
515 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
516 | unet = UNet2DConditionModel.from_pretrained( | ||
517 | args.pretrained_model_name_or_path, subfolder='unet') | ||
518 | |||
519 | ema_unet = EMAModel( | ||
520 | unet, | ||
521 | inv_gamma=args.ema_inv_gamma, | ||
522 | power=args.ema_power, | ||
523 | max_value=args.ema_max_decay, | ||
524 | device=accelerator.device | ||
525 | ) if args.use_ema else None | ||
526 | |||
527 | if args.gradient_checkpointing: | ||
528 | unet.enable_gradient_checkpointing() | ||
529 | |||
530 | # slice_size = unet.config.attention_head_dim // 2 | ||
531 | # unet.set_attention_slice(slice_size) | ||
532 | |||
533 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
534 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
535 | |||
536 | # Initialise the newly added placeholder token with the embeddings of the initializer token | ||
537 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
538 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
539 | token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
540 | |||
541 | # Freeze vae and unet | ||
542 | freeze_params(vae.parameters()) | ||
543 | # Freeze all parameters except for the token embeddings in text encoder | ||
544 | params_to_freeze = itertools.chain( | ||
545 | text_encoder.text_model.encoder.parameters(), | ||
546 | text_encoder.text_model.final_layer_norm.parameters(), | ||
547 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
548 | ) | ||
549 | freeze_params(params_to_freeze) | ||
550 | |||
551 | if args.scale_lr: | ||
552 | args.learning_rate_unet = ( | ||
553 | args.learning_rate_unet * args.gradient_accumulation_steps * | ||
554 | args.train_batch_size * accelerator.num_processes | ||
555 | ) | ||
556 | args.learning_rate_text = ( | ||
557 | args.learning_rate_text * args.gradient_accumulation_steps * | ||
558 | args.train_batch_size * accelerator.num_processes | ||
559 | ) | ||
560 | |||
561 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
562 | if args.use_8bit_adam: | ||
563 | try: | ||
564 | import bitsandbytes as bnb | ||
565 | except ImportError: | ||
566 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
567 | |||
568 | optimizer_class = bnb.optim.AdamW8bit | ||
569 | else: | ||
570 | optimizer_class = torch.optim.AdamW | ||
571 | |||
572 | # Initialize the optimizer | ||
573 | optimizer = optimizer_class( | ||
574 | [ | ||
575 | { | ||
576 | 'params': unet.parameters(), | ||
577 | 'lr': args.learning_rate_unet, | ||
578 | }, | ||
579 | { | ||
580 | 'params': text_encoder.get_input_embeddings().parameters(), | ||
581 | 'lr': args.learning_rate_text, | ||
582 | } | ||
583 | ], | ||
584 | betas=(args.adam_beta1, args.adam_beta2), | ||
585 | weight_decay=args.adam_weight_decay, | ||
586 | eps=args.adam_epsilon, | ||
587 | ) | ||
588 | |||
589 | noise_scheduler = DDPMScheduler( | ||
590 | beta_start=0.00085, | ||
591 | beta_end=0.012, | ||
592 | beta_schedule="scaled_linear", | ||
593 | num_train_timesteps=args.noise_timesteps | ||
594 | ) | ||
595 | |||
596 | def collate_fn(examples): | ||
597 | prompts = [example["prompts"] for example in examples] | ||
598 | nprompts = [example["nprompts"] for example in examples] | ||
599 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
600 | pixel_values = [example["instance_images"] for example in examples] | ||
601 | |||
602 | # concat class and instance examples for prior preservation | ||
603 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
604 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
605 | pixel_values += [example["class_images"] for example in examples] | ||
606 | |||
607 | pixel_values = torch.stack(pixel_values) | ||
608 | pixel_values = pixel_values.to(dtype=torch.float32, memory_format=torch.contiguous_format) | ||
609 | |||
610 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | ||
611 | |||
612 | batch = { | ||
613 | "prompts": prompts, | ||
614 | "nprompts": nprompts, | ||
615 | "input_ids": input_ids, | ||
616 | "pixel_values": pixel_values, | ||
617 | } | ||
618 | return batch | ||
619 | |||
620 | datamodule = CSVDataModule( | ||
621 | data_file=args.train_data_file, | ||
622 | batch_size=args.train_batch_size, | ||
623 | tokenizer=tokenizer, | ||
624 | instance_identifier=args.placeholder_token, | ||
625 | class_identifier=args.initializer_token, | ||
626 | class_subdir="cls", | ||
627 | num_class_images=args.num_class_images, | ||
628 | size=args.resolution, | ||
629 | repeats=args.repeats, | ||
630 | center_crop=args.center_crop, | ||
631 | valid_set_size=args.sample_batch_size*args.sample_batches, | ||
632 | collate_fn=collate_fn | ||
633 | ) | ||
634 | |||
635 | datamodule.prepare_data() | ||
636 | datamodule.setup() | ||
637 | |||
638 | if args.num_class_images != 0: | ||
639 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
640 | |||
641 | if len(missing_data) != 0: | ||
642 | batched_data = [missing_data[i:i+args.sample_batch_size] | ||
643 | for i in range(0, len(missing_data), args.sample_batch_size)] | ||
644 | |||
645 | scheduler = EulerAScheduler( | ||
646 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
647 | ) | ||
648 | |||
649 | pipeline = VlpnStableDiffusion( | ||
650 | text_encoder=text_encoder, | ||
651 | vae=vae, | ||
652 | unet=unet, | ||
653 | tokenizer=tokenizer, | ||
654 | scheduler=scheduler, | ||
655 | ).to(accelerator.device) | ||
656 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
657 | |||
658 | with torch.inference_mode(): | ||
659 | for batch in batched_data: | ||
660 | image_name = [p.class_image_path for p in batch] | ||
661 | prompt = [p.prompt.format(args.initializer_token) for p in batch] | ||
662 | nprompt = [p.nprompt for p in batch] | ||
663 | |||
664 | images = pipeline( | ||
665 | prompt=prompt, | ||
666 | negative_prompt=nprompt, | ||
667 | num_inference_steps=args.sample_steps | ||
668 | ).images | ||
669 | |||
670 | for i, image in enumerate(images): | ||
671 | image.save(image_name[i]) | ||
672 | |||
673 | del pipeline | ||
674 | |||
675 | if torch.cuda.is_available(): | ||
676 | torch.cuda.empty_cache() | ||
677 | |||
678 | train_dataloader = datamodule.train_dataloader() | ||
679 | val_dataloader = datamodule.val_dataloader() | ||
680 | |||
681 | # Scheduler and math around the number of training steps. | ||
682 | overrode_max_train_steps = False | ||
683 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
684 | if args.max_train_steps is None: | ||
685 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
686 | overrode_max_train_steps = True | ||
687 | |||
688 | lr_scheduler = get_scheduler( | ||
689 | args.lr_scheduler, | ||
690 | optimizer=optimizer, | ||
691 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
692 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
693 | ) | ||
694 | |||
695 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
696 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
697 | ) | ||
698 | |||
699 | # Move vae and unet to device | ||
700 | vae.to(accelerator.device) | ||
701 | |||
702 | # Keep vae and unet in eval mode as we don't train these | ||
703 | vae.eval() | ||
704 | |||
705 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
706 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
707 | if overrode_max_train_steps: | ||
708 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
709 | |||
710 | num_val_steps_per_epoch = len(val_dataloader) | ||
711 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
712 | val_steps = num_val_steps_per_epoch * num_epochs | ||
713 | |||
714 | # We need to initialize the trackers we use, and also store our configuration. | ||
715 | # The trackers initializes automatically on the main process. | ||
716 | if accelerator.is_main_process: | ||
717 | accelerator.init_trackers("dreambooth_plus", config=vars(args)) | ||
718 | |||
719 | # Train! | ||
720 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
721 | |||
722 | logger.info("***** Running training *****") | ||
723 | logger.info(f" Num Epochs = {num_epochs}") | ||
724 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
725 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
726 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
727 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
728 | # Only show the progress bar once on each machine. | ||
729 | |||
730 | global_step = 0 | ||
731 | min_val_loss = np.inf | ||
732 | |||
733 | checkpointer = Checkpointer( | ||
734 | datamodule=datamodule, | ||
735 | accelerator=accelerator, | ||
736 | vae=vae, | ||
737 | unet=unet, | ||
738 | ema_unet=ema_unet, | ||
739 | tokenizer=tokenizer, | ||
740 | text_encoder=text_encoder, | ||
741 | placeholder_token=args.placeholder_token, | ||
742 | placeholder_token_id=placeholder_token_id, | ||
743 | output_dir=basepath, | ||
744 | sample_image_size=args.sample_image_size, | ||
745 | sample_batch_size=args.sample_batch_size, | ||
746 | sample_batches=args.sample_batches, | ||
747 | seed=args.seed | ||
748 | ) | ||
749 | |||
750 | if accelerator.is_main_process: | ||
751 | checkpointer.save_samples( | ||
752 | 0, | ||
753 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
754 | |||
755 | local_progress_bar = tqdm( | ||
756 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
757 | disable=not accelerator.is_local_main_process, | ||
758 | dynamic_ncols=True | ||
759 | ) | ||
760 | local_progress_bar.set_description("Epoch X / Y") | ||
761 | |||
762 | global_progress_bar = tqdm( | ||
763 | range(args.max_train_steps + val_steps), | ||
764 | disable=not accelerator.is_local_main_process, | ||
765 | dynamic_ncols=True | ||
766 | ) | ||
767 | global_progress_bar.set_description("Total progress") | ||
768 | |||
769 | try: | ||
770 | for epoch in range(num_epochs): | ||
771 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
772 | local_progress_bar.reset() | ||
773 | |||
774 | text_encoder.train() | ||
775 | train_loss = 0.0 | ||
776 | |||
777 | sample_checkpoint = False | ||
778 | |||
779 | for step, batch in enumerate(train_dataloader): | ||
780 | with accelerator.accumulate(itertools.chain(unet, text_encoder)): | ||
781 | # Convert images to latent space | ||
782 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
783 | latents = latents * 0.18215 | ||
784 | |||
785 | # Sample noise that we'll add to the latents | ||
786 | noise = torch.randn(latents.shape).to(latents.device) | ||
787 | bsz = latents.shape[0] | ||
788 | # Sample a random timestep for each image | ||
789 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
790 | (bsz,), device=latents.device) | ||
791 | timesteps = timesteps.long() | ||
792 | |||
793 | # Add noise to the latents according to the noise magnitude at each timestep | ||
794 | # (this is the forward diffusion process) | ||
795 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
796 | |||
797 | # Get the text embedding for conditioning | ||
798 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
799 | |||
800 | # Predict the noise residual | ||
801 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
802 | |||
803 | if args.num_class_images != 0: | ||
804 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | ||
805 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | ||
806 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
807 | |||
808 | # Compute instance loss | ||
809 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
810 | |||
811 | # Compute prior loss | ||
812 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() | ||
813 | |||
814 | # Add the prior loss to the instance loss. | ||
815 | loss = loss + args.prior_loss_weight * prior_loss | ||
816 | else: | ||
817 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
818 | |||
819 | accelerator.backward(loss) | ||
820 | |||
821 | # Zero out the gradients for all token embeddings except the newly added | ||
822 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
823 | if accelerator.num_processes > 1: | ||
824 | grads = text_encoder.module.get_input_embeddings().weight.grad | ||
825 | else: | ||
826 | grads = text_encoder.get_input_embeddings().weight.grad | ||
827 | # Get the index for tokens that we want to zero the grads for | ||
828 | index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id | ||
829 | grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) | ||
830 | |||
831 | if accelerator.sync_gradients: | ||
832 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | ||
833 | |||
834 | optimizer.step() | ||
835 | if not accelerator.optimizer_step_was_skipped: | ||
836 | lr_scheduler.step() | ||
837 | optimizer.zero_grad(set_to_none=True) | ||
838 | |||
839 | loss = loss.detach().item() | ||
840 | train_loss += loss | ||
841 | |||
842 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
843 | if accelerator.sync_gradients: | ||
844 | if args.use_ema: | ||
845 | ema_unet.step(unet) | ||
846 | |||
847 | local_progress_bar.update(1) | ||
848 | global_progress_bar.update(1) | ||
849 | |||
850 | global_step += 1 | ||
851 | |||
852 | if global_step % args.sample_frequency == 0: | ||
853 | sample_checkpoint = True | ||
854 | |||
855 | logs = { | ||
856 | "train/loss": loss, | ||
857 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
858 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
859 | } | ||
860 | if args.use_ema: | ||
861 | logs["ema_decay"] = ema_unet.decay | ||
862 | |||
863 | accelerator.log(logs, step=global_step) | ||
864 | |||
865 | local_progress_bar.set_postfix(**logs) | ||
866 | |||
867 | if global_step >= args.max_train_steps: | ||
868 | break | ||
869 | |||
870 | train_loss /= len(train_dataloader) | ||
871 | |||
872 | accelerator.wait_for_everyone() | ||
873 | |||
874 | text_encoder.eval() | ||
875 | val_loss = 0.0 | ||
876 | |||
877 | for step, batch in enumerate(val_dataloader): | ||
878 | with torch.no_grad(): | ||
879 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
880 | latents = latents * 0.18215 | ||
881 | |||
882 | noise = torch.randn(latents.shape).to(latents.device) | ||
883 | bsz = latents.shape[0] | ||
884 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
885 | (bsz,), device=latents.device) | ||
886 | timesteps = timesteps.long() | ||
887 | |||
888 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
889 | |||
890 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
891 | |||
892 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
893 | |||
894 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
895 | |||
896 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
897 | |||
898 | loss = loss.detach().item() | ||
899 | val_loss += loss | ||
900 | |||
901 | if accelerator.sync_gradients: | ||
902 | local_progress_bar.update(1) | ||
903 | global_progress_bar.update(1) | ||
904 | |||
905 | logs = {"val/loss": loss} | ||
906 | local_progress_bar.set_postfix(**logs) | ||
907 | |||
908 | val_loss /= len(val_dataloader) | ||
909 | |||
910 | accelerator.log({"val/loss": val_loss}, step=global_step) | ||
911 | |||
912 | local_progress_bar.clear() | ||
913 | global_progress_bar.clear() | ||
914 | |||
915 | if min_val_loss > val_loss: | ||
916 | min_val_loss = val_loss | ||
917 | |||
918 | if sample_checkpoint and accelerator.is_main_process: | ||
919 | checkpointer.save_samples( | ||
920 | global_step + global_step_offset, | ||
921 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
922 | |||
923 | # Create the pipeline using using the trained modules and save it. | ||
924 | if accelerator.is_main_process: | ||
925 | print("Finished! Saving final checkpoint and resume state.") | ||
926 | checkpointer.checkpoint() | ||
927 | |||
928 | accelerator.end_training() | ||
929 | |||
930 | except KeyboardInterrupt: | ||
931 | if accelerator.is_main_process: | ||
932 | print("Interrupted, saving checkpoint and resume state...") | ||
933 | checkpointer.checkpoint() | ||
934 | accelerator.end_training() | ||
935 | quit() | ||
936 | |||
937 | |||
938 | if __name__ == "__main__": | ||
939 | main() | ||
@@ -205,10 +205,10 @@ def load_embeddings(tokenizer, text_encoder, embeddings_dir): | |||
205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): | 205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): |
206 | print("Loading Stable Diffusion pipeline...") | 206 | print("Loading Stable Diffusion pipeline...") |
207 | 207 | ||
208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='/tokenizer', torch_dtype=dtype) | 208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='tokenizer', torch_dtype=dtype) |
209 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='/text_encoder', torch_dtype=dtype) | 209 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='text_encoder', torch_dtype=dtype) |
210 | vae = AutoencoderKL.from_pretrained(model, subfolder='/vae', torch_dtype=dtype) | 210 | vae = AutoencoderKL.from_pretrained(model, subfolder='vae', torch_dtype=dtype) |
211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='/unet', torch_dtype=dtype) | 211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) |
212 | 212 | ||
213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) | 213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) |
214 | 214 | ||
diff --git a/textual_inversion.py b/textual_inversion.py index 3a3741d..181a318 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
@@ -111,7 +111,7 @@ def parse_args(): | |||
111 | parser.add_argument( | 111 | parser.add_argument( |
112 | "--max_train_steps", | 112 | "--max_train_steps", |
113 | type=int, | 113 | type=int, |
114 | default=3000, | 114 | default=10000, |
115 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 115 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
116 | ) | 116 | ) |
117 | parser.add_argument( | 117 | parser.add_argument( |
@@ -128,7 +128,7 @@ def parse_args(): | |||
128 | parser.add_argument( | 128 | parser.add_argument( |
129 | "--learning_rate", | 129 | "--learning_rate", |
130 | type=float, | 130 | type=float, |
131 | default=5e-5, | 131 | default=1e-4, |
132 | help="Initial learning rate (after the potential warmup period) to use.", | 132 | help="Initial learning rate (after the potential warmup period) to use.", |
133 | ) | 133 | ) |
134 | parser.add_argument( | 134 | parser.add_argument( |
@@ -247,6 +247,11 @@ def parse_args(): | |||
247 | help="The weight of prior preservation loss." | 247 | help="The weight of prior preservation loss." |
248 | ) | 248 | ) |
249 | parser.add_argument( | 249 | parser.add_argument( |
250 | "--noise_timesteps", | ||
251 | type=int, | ||
252 | default=1000, | ||
253 | ) | ||
254 | parser.add_argument( | ||
250 | "--resume_from", | 255 | "--resume_from", |
251 | type=str, | 256 | type=str, |
252 | default=None, | 257 | default=None, |
@@ -568,7 +573,7 @@ def main(): | |||
568 | beta_start=0.00085, | 573 | beta_start=0.00085, |
569 | beta_end=0.012, | 574 | beta_end=0.012, |
570 | beta_schedule="scaled_linear", | 575 | beta_schedule="scaled_linear", |
571 | num_train_timesteps=1000 | 576 | num_train_timesteps=args.noise_timesteps |
572 | ) | 577 | ) |
573 | 578 | ||
574 | def collate_fn(examples): | 579 | def collate_fn(examples): |