diff options
| -rw-r--r-- | dreambooth.py | 15 | ||||
| -rw-r--r-- | dreambooth_plus.py | 939 | ||||
| -rw-r--r-- | infer.py | 8 | ||||
| -rw-r--r-- | textual_inversion.py | 11 |
4 files changed, 961 insertions, 12 deletions
diff --git a/dreambooth.py b/dreambooth.py index 775aea2..699313e 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
| @@ -129,7 +129,7 @@ def parse_args(): | |||
| 129 | parser.add_argument( | 129 | parser.add_argument( |
| 130 | "--learning_rate", | 130 | "--learning_rate", |
| 131 | type=float, | 131 | type=float, |
| 132 | default=1e-6, | 132 | default=5e-6, |
| 133 | help="Initial learning rate (after the potential warmup period) to use.", | 133 | help="Initial learning rate (after the potential warmup period) to use.", |
| 134 | ) | 134 | ) |
| 135 | parser.add_argument( | 135 | parser.add_argument( |
| @@ -167,7 +167,7 @@ def parse_args(): | |||
| 167 | parser.add_argument( | 167 | parser.add_argument( |
| 168 | "--ema_power", | 168 | "--ema_power", |
| 169 | type=float, | 169 | type=float, |
| 170 | default=7 / 8 | 170 | default=6 / 7 |
| 171 | ) | 171 | ) |
| 172 | parser.add_argument( | 172 | parser.add_argument( |
| 173 | "--ema_max_decay", | 173 | "--ema_max_decay", |
| @@ -270,6 +270,11 @@ def parse_args(): | |||
| 270 | help="Max gradient norm." | 270 | help="Max gradient norm." |
| 271 | ) | 271 | ) |
| 272 | parser.add_argument( | 272 | parser.add_argument( |
| 273 | "--noise_timesteps", | ||
| 274 | type=int, | ||
| 275 | default=1000, | ||
| 276 | ) | ||
| 277 | parser.add_argument( | ||
| 273 | "--config", | 278 | "--config", |
| 274 | type=str, | 279 | type=str, |
| 275 | default=None, | 280 | default=None, |
| @@ -480,7 +485,8 @@ def main(): | |||
| 480 | unet, | 485 | unet, |
| 481 | inv_gamma=args.ema_inv_gamma, | 486 | inv_gamma=args.ema_inv_gamma, |
| 482 | power=args.ema_power, | 487 | power=args.ema_power, |
| 483 | max_value=args.ema_max_decay | 488 | max_value=args.ema_max_decay, |
| 489 | device=accelerator.device | ||
| 484 | ) if args.use_ema else None | 490 | ) if args.use_ema else None |
| 485 | 491 | ||
| 486 | if args.gradient_checkpointing: | 492 | if args.gradient_checkpointing: |
| @@ -523,7 +529,7 @@ def main(): | |||
| 523 | beta_start=0.00085, | 529 | beta_start=0.00085, |
| 524 | beta_end=0.012, | 530 | beta_end=0.012, |
| 525 | beta_schedule="scaled_linear", | 531 | beta_schedule="scaled_linear", |
| 526 | num_train_timesteps=1000 | 532 | num_train_timesteps=args.noise_timesteps |
| 527 | ) | 533 | ) |
| 528 | 534 | ||
| 529 | def collate_fn(examples): | 535 | def collate_fn(examples): |
| @@ -632,7 +638,6 @@ def main(): | |||
| 632 | # Move text_encoder and vae to device | 638 | # Move text_encoder and vae to device |
| 633 | text_encoder.to(accelerator.device) | 639 | text_encoder.to(accelerator.device) |
| 634 | vae.to(accelerator.device) | 640 | vae.to(accelerator.device) |
| 635 | ema_unet.averaged_model.to(accelerator.device) | ||
| 636 | 641 | ||
| 637 | # Keep text_encoder and vae in eval mode as we don't train these | 642 | # Keep text_encoder and vae in eval mode as we don't train these |
| 638 | text_encoder.eval() | 643 | text_encoder.eval() |
diff --git a/dreambooth_plus.py b/dreambooth_plus.py new file mode 100644 index 0000000..9e482b3 --- /dev/null +++ b/dreambooth_plus.py | |||
| @@ -0,0 +1,939 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import os | ||
| 5 | import datetime | ||
| 6 | import logging | ||
| 7 | import json | ||
| 8 | from pathlib import Path | ||
| 9 | |||
| 10 | import numpy as np | ||
| 11 | import torch | ||
| 12 | import torch.nn.functional as F | ||
| 13 | import torch.utils.checkpoint | ||
| 14 | |||
| 15 | from accelerate import Accelerator | ||
| 16 | from accelerate.logging import get_logger | ||
| 17 | from accelerate.utils import LoggerType, set_seed | ||
| 18 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel | ||
| 19 | from diffusers.optimization import get_scheduler | ||
| 20 | from diffusers.training_utils import EMAModel | ||
| 21 | from PIL import Image | ||
| 22 | from tqdm.auto import tqdm | ||
| 23 | from transformers import CLIPTextModel, CLIPTokenizer | ||
| 24 | from slugify import slugify | ||
| 25 | |||
| 26 | from schedulers.scheduling_euler_a import EulerAScheduler | ||
| 27 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 28 | from data.csv import CSVDataModule | ||
| 29 | |||
| 30 | logger = get_logger(__name__) | ||
| 31 | |||
| 32 | |||
| 33 | torch.backends.cuda.matmul.allow_tf32 = True | ||
| 34 | |||
| 35 | |||
| 36 | def parse_args(): | ||
| 37 | parser = argparse.ArgumentParser( | ||
| 38 | description="Simple example of a training script." | ||
| 39 | ) | ||
| 40 | parser.add_argument( | ||
| 41 | "--pretrained_model_name_or_path", | ||
| 42 | type=str, | ||
| 43 | default=None, | ||
| 44 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 45 | ) | ||
| 46 | parser.add_argument( | ||
| 47 | "--tokenizer_name", | ||
| 48 | type=str, | ||
| 49 | default=None, | ||
| 50 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 51 | ) | ||
| 52 | parser.add_argument( | ||
| 53 | "--train_data_file", | ||
| 54 | type=str, | ||
| 55 | default=None, | ||
| 56 | help="A CSV file containing the training data." | ||
| 57 | ) | ||
| 58 | parser.add_argument( | ||
| 59 | "--placeholder_token", | ||
| 60 | type=str, | ||
| 61 | default=None, | ||
| 62 | help="A token to use as a placeholder for the concept.", | ||
| 63 | ) | ||
| 64 | parser.add_argument( | ||
| 65 | "--initializer_token", | ||
| 66 | type=str, | ||
| 67 | default=None, | ||
| 68 | help="A token to use as initializer word." | ||
| 69 | ) | ||
| 70 | parser.add_argument( | ||
| 71 | "--num_class_images", | ||
| 72 | type=int, | ||
| 73 | default=400, | ||
| 74 | help="How many class images to generate per training image." | ||
| 75 | ) | ||
| 76 | parser.add_argument( | ||
| 77 | "--repeats", | ||
| 78 | type=int, | ||
| 79 | default=1, | ||
| 80 | help="How many times to repeat the training data." | ||
| 81 | ) | ||
| 82 | parser.add_argument( | ||
| 83 | "--output_dir", | ||
| 84 | type=str, | ||
| 85 | default="output/dreambooth-plus", | ||
| 86 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 87 | ) | ||
| 88 | parser.add_argument( | ||
| 89 | "--seed", | ||
| 90 | type=int, | ||
| 91 | default=None, | ||
| 92 | help="A seed for reproducible training.") | ||
| 93 | parser.add_argument( | ||
| 94 | "--resolution", | ||
| 95 | type=int, | ||
| 96 | default=512, | ||
| 97 | help=( | ||
| 98 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 99 | " resolution" | ||
| 100 | ), | ||
| 101 | ) | ||
| 102 | parser.add_argument( | ||
| 103 | "--center_crop", | ||
| 104 | action="store_true", | ||
| 105 | help="Whether to center crop images before resizing to resolution" | ||
| 106 | ) | ||
| 107 | parser.add_argument( | ||
| 108 | "--num_train_epochs", | ||
| 109 | type=int, | ||
| 110 | default=100 | ||
| 111 | ) | ||
| 112 | parser.add_argument( | ||
| 113 | "--max_train_steps", | ||
| 114 | type=int, | ||
| 115 | default=3000, | ||
| 116 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 117 | ) | ||
| 118 | parser.add_argument( | ||
| 119 | "--gradient_accumulation_steps", | ||
| 120 | type=int, | ||
| 121 | default=1, | ||
| 122 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 123 | ) | ||
| 124 | parser.add_argument( | ||
| 125 | "--gradient_checkpointing", | ||
| 126 | action="store_true", | ||
| 127 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 128 | ) | ||
| 129 | parser.add_argument( | ||
| 130 | "--learning_rate_unet", | ||
| 131 | type=float, | ||
| 132 | default=1e-5, | ||
| 133 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 134 | ) | ||
| 135 | parser.add_argument( | ||
| 136 | "--learning_rate_text", | ||
| 137 | type=float, | ||
| 138 | default=1e-4, | ||
| 139 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 140 | ) | ||
| 141 | parser.add_argument( | ||
| 142 | "--scale_lr", | ||
| 143 | action="store_true", | ||
| 144 | default=True, | ||
| 145 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 146 | ) | ||
| 147 | parser.add_argument( | ||
| 148 | "--lr_scheduler", | ||
| 149 | type=str, | ||
| 150 | default="cosine", | ||
| 151 | help=( | ||
| 152 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 153 | ' "constant", "constant_with_warmup"]' | ||
| 154 | ), | ||
| 155 | ) | ||
| 156 | parser.add_argument( | ||
| 157 | "--lr_warmup_steps", | ||
| 158 | type=int, | ||
| 159 | default=500, | ||
| 160 | help="Number of steps for the warmup in the lr scheduler." | ||
| 161 | ) | ||
| 162 | parser.add_argument( | ||
| 163 | "--use_ema", | ||
| 164 | action="store_true", | ||
| 165 | default=True, | ||
| 166 | help="Whether to use EMA model." | ||
| 167 | ) | ||
| 168 | parser.add_argument( | ||
| 169 | "--ema_inv_gamma", | ||
| 170 | type=float, | ||
| 171 | default=1.0 | ||
| 172 | ) | ||
| 173 | parser.add_argument( | ||
| 174 | "--ema_power", | ||
| 175 | type=float, | ||
| 176 | default=6 / 7 | ||
| 177 | ) | ||
| 178 | parser.add_argument( | ||
| 179 | "--ema_max_decay", | ||
| 180 | type=float, | ||
| 181 | default=0.9999 | ||
| 182 | ) | ||
| 183 | parser.add_argument( | ||
| 184 | "--use_8bit_adam", | ||
| 185 | action="store_true", | ||
| 186 | default=True, | ||
| 187 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
| 188 | ) | ||
| 189 | parser.add_argument( | ||
| 190 | "--adam_beta1", | ||
| 191 | type=float, | ||
| 192 | default=0.9, | ||
| 193 | help="The beta1 parameter for the Adam optimizer." | ||
| 194 | ) | ||
| 195 | parser.add_argument( | ||
| 196 | "--adam_beta2", | ||
| 197 | type=float, | ||
| 198 | default=0.999, | ||
| 199 | help="The beta2 parameter for the Adam optimizer." | ||
| 200 | ) | ||
| 201 | parser.add_argument( | ||
| 202 | "--adam_weight_decay", | ||
| 203 | type=float, | ||
| 204 | default=1e-2, | ||
| 205 | help="Weight decay to use." | ||
| 206 | ) | ||
| 207 | parser.add_argument( | ||
| 208 | "--adam_epsilon", | ||
| 209 | type=float, | ||
| 210 | default=1e-08, | ||
| 211 | help="Epsilon value for the Adam optimizer" | ||
| 212 | ) | ||
| 213 | parser.add_argument( | ||
| 214 | "--mixed_precision", | ||
| 215 | type=str, | ||
| 216 | default="no", | ||
| 217 | choices=["no", "fp16", "bf16"], | ||
| 218 | help=( | ||
| 219 | "Whether to use mixed precision. Choose" | ||
| 220 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 221 | "and an Nvidia Ampere GPU." | ||
| 222 | ), | ||
| 223 | ) | ||
| 224 | parser.add_argument( | ||
| 225 | "--local_rank", | ||
| 226 | type=int, | ||
| 227 | default=-1, | ||
| 228 | help="For distributed training: local_rank" | ||
| 229 | ) | ||
| 230 | parser.add_argument( | ||
| 231 | "--sample_frequency", | ||
| 232 | type=int, | ||
| 233 | default=100, | ||
| 234 | help="How often to save a checkpoint and sample image", | ||
| 235 | ) | ||
| 236 | parser.add_argument( | ||
| 237 | "--sample_image_size", | ||
| 238 | type=int, | ||
| 239 | default=512, | ||
| 240 | help="Size of sample images", | ||
| 241 | ) | ||
| 242 | parser.add_argument( | ||
| 243 | "--sample_batches", | ||
| 244 | type=int, | ||
| 245 | default=1, | ||
| 246 | help="Number of sample batches to generate per checkpoint", | ||
| 247 | ) | ||
| 248 | parser.add_argument( | ||
| 249 | "--sample_batch_size", | ||
| 250 | type=int, | ||
| 251 | default=1, | ||
| 252 | help="Number of samples to generate per batch", | ||
| 253 | ) | ||
| 254 | parser.add_argument( | ||
| 255 | "--train_batch_size", | ||
| 256 | type=int, | ||
| 257 | default=1, | ||
| 258 | help="Batch size (per device) for the training dataloader." | ||
| 259 | ) | ||
| 260 | parser.add_argument( | ||
| 261 | "--sample_steps", | ||
| 262 | type=int, | ||
| 263 | default=30, | ||
| 264 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 265 | ) | ||
| 266 | parser.add_argument( | ||
| 267 | "--prior_loss_weight", | ||
| 268 | type=float, | ||
| 269 | default=1.0, | ||
| 270 | help="The weight of prior preservation loss." | ||
| 271 | ) | ||
| 272 | parser.add_argument( | ||
| 273 | "--max_grad_norm", | ||
| 274 | default=1.0, | ||
| 275 | type=float, | ||
| 276 | help="Max gradient norm." | ||
| 277 | ) | ||
| 278 | parser.add_argument( | ||
| 279 | "--noise_timesteps", | ||
| 280 | type=int, | ||
| 281 | default=1000, | ||
| 282 | ) | ||
| 283 | parser.add_argument( | ||
| 284 | "--config", | ||
| 285 | type=str, | ||
| 286 | default=None, | ||
| 287 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
| 288 | ) | ||
| 289 | |||
| 290 | args = parser.parse_args() | ||
| 291 | if args.config is not None: | ||
| 292 | with open(args.config, 'rt') as f: | ||
| 293 | args = parser.parse_args( | ||
| 294 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 295 | |||
| 296 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
| 297 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
| 298 | args.local_rank = env_local_rank | ||
| 299 | |||
| 300 | if args.train_data_file is None: | ||
| 301 | raise ValueError("You must specify --train_data_file") | ||
| 302 | |||
| 303 | if args.pretrained_model_name_or_path is None: | ||
| 304 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 305 | |||
| 306 | if args.placeholder_token is None: | ||
| 307 | raise ValueError("You must specify --placeholder_token") | ||
| 308 | |||
| 309 | if args.initializer_token is None: | ||
| 310 | raise ValueError("You must specify --initializer_token") | ||
| 311 | |||
| 312 | if args.output_dir is None: | ||
| 313 | raise ValueError("You must specify --output_dir") | ||
| 314 | |||
| 315 | return args | ||
| 316 | |||
| 317 | |||
| 318 | def freeze_params(params): | ||
| 319 | for param in params: | ||
| 320 | param.requires_grad = False | ||
| 321 | |||
| 322 | |||
| 323 | def make_grid(images, rows, cols): | ||
| 324 | w, h = images[0].size | ||
| 325 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 326 | for i, image in enumerate(images): | ||
| 327 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 328 | return grid | ||
| 329 | |||
| 330 | |||
| 331 | class Checkpointer: | ||
| 332 | def __init__( | ||
| 333 | self, | ||
| 334 | datamodule, | ||
| 335 | accelerator, | ||
| 336 | vae, | ||
| 337 | unet, | ||
| 338 | ema_unet, | ||
| 339 | tokenizer, | ||
| 340 | text_encoder, | ||
| 341 | placeholder_token, | ||
| 342 | placeholder_token_id, | ||
| 343 | output_dir: Path, | ||
| 344 | sample_image_size, | ||
| 345 | sample_batches, | ||
| 346 | sample_batch_size, | ||
| 347 | seed | ||
| 348 | ): | ||
| 349 | self.datamodule = datamodule | ||
| 350 | self.accelerator = accelerator | ||
| 351 | self.vae = vae | ||
| 352 | self.unet = unet | ||
| 353 | self.ema_unet = ema_unet | ||
| 354 | self.tokenizer = tokenizer | ||
| 355 | self.text_encoder = text_encoder | ||
| 356 | self.placeholder_token = placeholder_token | ||
| 357 | self.placeholder_token_id = placeholder_token_id | ||
| 358 | self.output_dir = output_dir | ||
| 359 | self.sample_image_size = sample_image_size | ||
| 360 | self.seed = seed or torch.random.seed() | ||
| 361 | self.sample_batches = sample_batches | ||
| 362 | self.sample_batch_size = sample_batch_size | ||
| 363 | |||
| 364 | @torch.no_grad() | ||
| 365 | def checkpoint(self): | ||
| 366 | print("Saving model...") | ||
| 367 | |||
| 368 | unwrapped_unet = self.accelerator.unwrap_model( | ||
| 369 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
| 370 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 371 | pipeline = VlpnStableDiffusion( | ||
| 372 | text_encoder=unwrapped_text_encoder, | ||
| 373 | vae=self.vae, | ||
| 374 | unet=unwrapped_unet, | ||
| 375 | tokenizer=self.tokenizer, | ||
| 376 | scheduler=PNDMScheduler( | ||
| 377 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
| 378 | ), | ||
| 379 | ) | ||
| 380 | pipeline.save_pretrained(self.output_dir.joinpath("model")) | ||
| 381 | |||
| 382 | del unwrapped_unet | ||
| 383 | del unwrapped_text_encoder | ||
| 384 | del pipeline | ||
| 385 | |||
| 386 | if torch.cuda.is_available(): | ||
| 387 | torch.cuda.empty_cache() | ||
| 388 | |||
| 389 | @torch.no_grad() | ||
| 390 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | ||
| 391 | samples_path = Path(self.output_dir).joinpath("samples") | ||
| 392 | |||
| 393 | unwrapped_unet = self.accelerator.unwrap_model( | ||
| 394 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
| 395 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 396 | scheduler = EulerAScheduler( | ||
| 397 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 398 | ) | ||
| 399 | |||
| 400 | # Save a sample image | ||
| 401 | pipeline = VlpnStableDiffusion( | ||
| 402 | text_encoder=unwrapped_text_encoder, | ||
| 403 | vae=self.vae, | ||
| 404 | unet=unwrapped_unet, | ||
| 405 | tokenizer=self.tokenizer, | ||
| 406 | scheduler=scheduler, | ||
| 407 | ).to(self.accelerator.device) | ||
| 408 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 409 | |||
| 410 | train_data = self.datamodule.train_dataloader() | ||
| 411 | val_data = self.datamodule.val_dataloader() | ||
| 412 | |||
| 413 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
| 414 | stable_latents = torch.randn( | ||
| 415 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
| 416 | device=pipeline.device, | ||
| 417 | generator=generator, | ||
| 418 | ) | ||
| 419 | |||
| 420 | with torch.inference_mode(): | ||
| 421 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
| 422 | all_samples = [] | ||
| 423 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | ||
| 424 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 425 | |||
| 426 | data_enum = enumerate(data) | ||
| 427 | |||
| 428 | for i in range(self.sample_batches): | ||
| 429 | batches = [batch for j, batch in data_enum if j * data.batch_size < self.sample_batch_size] | ||
| 430 | prompt = [prompt.format(self.placeholder_token) | ||
| 431 | for batch in batches for prompt in batch["prompts"]][:self.sample_batch_size] | ||
| 432 | nprompt = [prompt for batch in batches for prompt in batch["nprompts"]][:self.sample_batch_size] | ||
| 433 | |||
| 434 | samples = pipeline( | ||
| 435 | prompt=prompt, | ||
| 436 | negative_prompt=nprompt, | ||
| 437 | height=self.sample_image_size, | ||
| 438 | width=self.sample_image_size, | ||
| 439 | latents=latents[:len(prompt)] if latents is not None else None, | ||
| 440 | generator=generator if latents is not None else None, | ||
| 441 | guidance_scale=guidance_scale, | ||
| 442 | eta=eta, | ||
| 443 | num_inference_steps=num_inference_steps, | ||
| 444 | output_type='pil' | ||
| 445 | )["sample"] | ||
| 446 | |||
| 447 | all_samples += samples | ||
| 448 | |||
| 449 | del samples | ||
| 450 | |||
| 451 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
| 452 | image_grid.save(file_path) | ||
| 453 | |||
| 454 | del all_samples | ||
| 455 | del image_grid | ||
| 456 | |||
| 457 | del unwrapped_unet | ||
| 458 | del unwrapped_text_encoder | ||
| 459 | del scheduler | ||
| 460 | del pipeline | ||
| 461 | del generator | ||
| 462 | del stable_latents | ||
| 463 | |||
| 464 | if torch.cuda.is_available(): | ||
| 465 | torch.cuda.empty_cache() | ||
| 466 | |||
| 467 | |||
| 468 | def main(): | ||
| 469 | args = parse_args() | ||
| 470 | |||
| 471 | global_step_offset = 0 | ||
| 472 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 473 | basepath = Path(args.output_dir).joinpath(slugify(args.placeholder_token), now) | ||
| 474 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 475 | |||
| 476 | accelerator = Accelerator( | ||
| 477 | log_with=LoggerType.TENSORBOARD, | ||
| 478 | logging_dir=f"{basepath}", | ||
| 479 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 480 | mixed_precision=args.mixed_precision | ||
| 481 | ) | ||
| 482 | |||
| 483 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 484 | |||
| 485 | # If passed along, set the training seed now. | ||
| 486 | if args.seed is not None: | ||
| 487 | set_seed(args.seed) | ||
| 488 | |||
| 489 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 490 | if args.tokenizer_name: | ||
| 491 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 492 | elif args.pretrained_model_name_or_path: | ||
| 493 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 494 | |||
| 495 | # Add the placeholder token in tokenizer | ||
| 496 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
| 497 | if num_added_tokens == 0: | ||
| 498 | raise ValueError( | ||
| 499 | f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" | ||
| 500 | " `placeholder_token` that is not already in the tokenizer." | ||
| 501 | ) | ||
| 502 | |||
| 503 | # Convert the initializer_token, placeholder_token to ids | ||
| 504 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
| 505 | # Check if initializer_token is a single token or a sequence of tokens | ||
| 506 | if len(initializer_token_ids) > 1: | ||
| 507 | raise ValueError( | ||
| 508 | f"initializer_token_ids must not have more than 1 vector, but it's {len(initializer_token_ids)}.") | ||
| 509 | |||
| 510 | initializer_token_ids = torch.tensor(initializer_token_ids) | ||
| 511 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
| 512 | |||
| 513 | # Load models and create wrapper for stable diffusion | ||
| 514 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 515 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
| 516 | unet = UNet2DConditionModel.from_pretrained( | ||
| 517 | args.pretrained_model_name_or_path, subfolder='unet') | ||
| 518 | |||
| 519 | ema_unet = EMAModel( | ||
| 520 | unet, | ||
| 521 | inv_gamma=args.ema_inv_gamma, | ||
| 522 | power=args.ema_power, | ||
| 523 | max_value=args.ema_max_decay, | ||
| 524 | device=accelerator.device | ||
| 525 | ) if args.use_ema else None | ||
| 526 | |||
| 527 | if args.gradient_checkpointing: | ||
| 528 | unet.enable_gradient_checkpointing() | ||
| 529 | |||
| 530 | # slice_size = unet.config.attention_head_dim // 2 | ||
| 531 | # unet.set_attention_slice(slice_size) | ||
| 532 | |||
| 533 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
| 534 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
| 535 | |||
| 536 | # Initialise the newly added placeholder token with the embeddings of the initializer token | ||
| 537 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
| 538 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 539 | token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
| 540 | |||
| 541 | # Freeze vae and unet | ||
| 542 | freeze_params(vae.parameters()) | ||
| 543 | # Freeze all parameters except for the token embeddings in text encoder | ||
| 544 | params_to_freeze = itertools.chain( | ||
| 545 | text_encoder.text_model.encoder.parameters(), | ||
| 546 | text_encoder.text_model.final_layer_norm.parameters(), | ||
| 547 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
| 548 | ) | ||
| 549 | freeze_params(params_to_freeze) | ||
| 550 | |||
| 551 | if args.scale_lr: | ||
| 552 | args.learning_rate_unet = ( | ||
| 553 | args.learning_rate_unet * args.gradient_accumulation_steps * | ||
| 554 | args.train_batch_size * accelerator.num_processes | ||
| 555 | ) | ||
| 556 | args.learning_rate_text = ( | ||
| 557 | args.learning_rate_text * args.gradient_accumulation_steps * | ||
| 558 | args.train_batch_size * accelerator.num_processes | ||
| 559 | ) | ||
| 560 | |||
| 561 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 562 | if args.use_8bit_adam: | ||
| 563 | try: | ||
| 564 | import bitsandbytes as bnb | ||
| 565 | except ImportError: | ||
| 566 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 567 | |||
| 568 | optimizer_class = bnb.optim.AdamW8bit | ||
| 569 | else: | ||
| 570 | optimizer_class = torch.optim.AdamW | ||
| 571 | |||
| 572 | # Initialize the optimizer | ||
| 573 | optimizer = optimizer_class( | ||
| 574 | [ | ||
| 575 | { | ||
| 576 | 'params': unet.parameters(), | ||
| 577 | 'lr': args.learning_rate_unet, | ||
| 578 | }, | ||
| 579 | { | ||
| 580 | 'params': text_encoder.get_input_embeddings().parameters(), | ||
| 581 | 'lr': args.learning_rate_text, | ||
| 582 | } | ||
| 583 | ], | ||
| 584 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 585 | weight_decay=args.adam_weight_decay, | ||
| 586 | eps=args.adam_epsilon, | ||
| 587 | ) | ||
| 588 | |||
| 589 | noise_scheduler = DDPMScheduler( | ||
| 590 | beta_start=0.00085, | ||
| 591 | beta_end=0.012, | ||
| 592 | beta_schedule="scaled_linear", | ||
| 593 | num_train_timesteps=args.noise_timesteps | ||
| 594 | ) | ||
| 595 | |||
| 596 | def collate_fn(examples): | ||
| 597 | prompts = [example["prompts"] for example in examples] | ||
| 598 | nprompts = [example["nprompts"] for example in examples] | ||
| 599 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
| 600 | pixel_values = [example["instance_images"] for example in examples] | ||
| 601 | |||
| 602 | # concat class and instance examples for prior preservation | ||
| 603 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
| 604 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
| 605 | pixel_values += [example["class_images"] for example in examples] | ||
| 606 | |||
| 607 | pixel_values = torch.stack(pixel_values) | ||
| 608 | pixel_values = pixel_values.to(dtype=torch.float32, memory_format=torch.contiguous_format) | ||
| 609 | |||
| 610 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | ||
| 611 | |||
| 612 | batch = { | ||
| 613 | "prompts": prompts, | ||
| 614 | "nprompts": nprompts, | ||
| 615 | "input_ids": input_ids, | ||
| 616 | "pixel_values": pixel_values, | ||
| 617 | } | ||
| 618 | return batch | ||
| 619 | |||
| 620 | datamodule = CSVDataModule( | ||
| 621 | data_file=args.train_data_file, | ||
| 622 | batch_size=args.train_batch_size, | ||
| 623 | tokenizer=tokenizer, | ||
| 624 | instance_identifier=args.placeholder_token, | ||
| 625 | class_identifier=args.initializer_token, | ||
| 626 | class_subdir="cls", | ||
| 627 | num_class_images=args.num_class_images, | ||
| 628 | size=args.resolution, | ||
| 629 | repeats=args.repeats, | ||
| 630 | center_crop=args.center_crop, | ||
| 631 | valid_set_size=args.sample_batch_size*args.sample_batches, | ||
| 632 | collate_fn=collate_fn | ||
| 633 | ) | ||
| 634 | |||
| 635 | datamodule.prepare_data() | ||
| 636 | datamodule.setup() | ||
| 637 | |||
| 638 | if args.num_class_images != 0: | ||
| 639 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
| 640 | |||
| 641 | if len(missing_data) != 0: | ||
| 642 | batched_data = [missing_data[i:i+args.sample_batch_size] | ||
| 643 | for i in range(0, len(missing_data), args.sample_batch_size)] | ||
| 644 | |||
| 645 | scheduler = EulerAScheduler( | ||
| 646 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 647 | ) | ||
| 648 | |||
| 649 | pipeline = VlpnStableDiffusion( | ||
| 650 | text_encoder=text_encoder, | ||
| 651 | vae=vae, | ||
| 652 | unet=unet, | ||
| 653 | tokenizer=tokenizer, | ||
| 654 | scheduler=scheduler, | ||
| 655 | ).to(accelerator.device) | ||
| 656 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 657 | |||
| 658 | with torch.inference_mode(): | ||
| 659 | for batch in batched_data: | ||
| 660 | image_name = [p.class_image_path for p in batch] | ||
| 661 | prompt = [p.prompt.format(args.initializer_token) for p in batch] | ||
| 662 | nprompt = [p.nprompt for p in batch] | ||
| 663 | |||
| 664 | images = pipeline( | ||
| 665 | prompt=prompt, | ||
| 666 | negative_prompt=nprompt, | ||
| 667 | num_inference_steps=args.sample_steps | ||
| 668 | ).images | ||
| 669 | |||
| 670 | for i, image in enumerate(images): | ||
| 671 | image.save(image_name[i]) | ||
| 672 | |||
| 673 | del pipeline | ||
| 674 | |||
| 675 | if torch.cuda.is_available(): | ||
| 676 | torch.cuda.empty_cache() | ||
| 677 | |||
| 678 | train_dataloader = datamodule.train_dataloader() | ||
| 679 | val_dataloader = datamodule.val_dataloader() | ||
| 680 | |||
| 681 | # Scheduler and math around the number of training steps. | ||
| 682 | overrode_max_train_steps = False | ||
| 683 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 684 | if args.max_train_steps is None: | ||
| 685 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 686 | overrode_max_train_steps = True | ||
| 687 | |||
| 688 | lr_scheduler = get_scheduler( | ||
| 689 | args.lr_scheduler, | ||
| 690 | optimizer=optimizer, | ||
| 691 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
| 692 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 693 | ) | ||
| 694 | |||
| 695 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 696 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 697 | ) | ||
| 698 | |||
| 699 | # Move vae and unet to device | ||
| 700 | vae.to(accelerator.device) | ||
| 701 | |||
| 702 | # Keep vae and unet in eval mode as we don't train these | ||
| 703 | vae.eval() | ||
| 704 | |||
| 705 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 706 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 707 | if overrode_max_train_steps: | ||
| 708 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 709 | |||
| 710 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 711 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 712 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 713 | |||
| 714 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 715 | # The trackers initializes automatically on the main process. | ||
| 716 | if accelerator.is_main_process: | ||
| 717 | accelerator.init_trackers("dreambooth_plus", config=vars(args)) | ||
| 718 | |||
| 719 | # Train! | ||
| 720 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 721 | |||
| 722 | logger.info("***** Running training *****") | ||
| 723 | logger.info(f" Num Epochs = {num_epochs}") | ||
| 724 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 725 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 726 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 727 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 728 | # Only show the progress bar once on each machine. | ||
| 729 | |||
| 730 | global_step = 0 | ||
| 731 | min_val_loss = np.inf | ||
| 732 | |||
| 733 | checkpointer = Checkpointer( | ||
| 734 | datamodule=datamodule, | ||
| 735 | accelerator=accelerator, | ||
| 736 | vae=vae, | ||
| 737 | unet=unet, | ||
| 738 | ema_unet=ema_unet, | ||
| 739 | tokenizer=tokenizer, | ||
| 740 | text_encoder=text_encoder, | ||
| 741 | placeholder_token=args.placeholder_token, | ||
| 742 | placeholder_token_id=placeholder_token_id, | ||
| 743 | output_dir=basepath, | ||
| 744 | sample_image_size=args.sample_image_size, | ||
| 745 | sample_batch_size=args.sample_batch_size, | ||
| 746 | sample_batches=args.sample_batches, | ||
| 747 | seed=args.seed | ||
| 748 | ) | ||
| 749 | |||
| 750 | if accelerator.is_main_process: | ||
| 751 | checkpointer.save_samples( | ||
| 752 | 0, | ||
| 753 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 754 | |||
| 755 | local_progress_bar = tqdm( | ||
| 756 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 757 | disable=not accelerator.is_local_main_process, | ||
| 758 | dynamic_ncols=True | ||
| 759 | ) | ||
| 760 | local_progress_bar.set_description("Epoch X / Y") | ||
| 761 | |||
| 762 | global_progress_bar = tqdm( | ||
| 763 | range(args.max_train_steps + val_steps), | ||
| 764 | disable=not accelerator.is_local_main_process, | ||
| 765 | dynamic_ncols=True | ||
| 766 | ) | ||
| 767 | global_progress_bar.set_description("Total progress") | ||
| 768 | |||
| 769 | try: | ||
| 770 | for epoch in range(num_epochs): | ||
| 771 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 772 | local_progress_bar.reset() | ||
| 773 | |||
| 774 | text_encoder.train() | ||
| 775 | train_loss = 0.0 | ||
| 776 | |||
| 777 | sample_checkpoint = False | ||
| 778 | |||
| 779 | for step, batch in enumerate(train_dataloader): | ||
| 780 | with accelerator.accumulate(itertools.chain(unet, text_encoder)): | ||
| 781 | # Convert images to latent space | ||
| 782 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 783 | latents = latents * 0.18215 | ||
| 784 | |||
| 785 | # Sample noise that we'll add to the latents | ||
| 786 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 787 | bsz = latents.shape[0] | ||
| 788 | # Sample a random timestep for each image | ||
| 789 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 790 | (bsz,), device=latents.device) | ||
| 791 | timesteps = timesteps.long() | ||
| 792 | |||
| 793 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 794 | # (this is the forward diffusion process) | ||
| 795 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 796 | |||
| 797 | # Get the text embedding for conditioning | ||
| 798 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 799 | |||
| 800 | # Predict the noise residual | ||
| 801 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 802 | |||
| 803 | if args.num_class_images != 0: | ||
| 804 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | ||
| 805 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | ||
| 806 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
| 807 | |||
| 808 | # Compute instance loss | ||
| 809 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 810 | |||
| 811 | # Compute prior loss | ||
| 812 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean() | ||
| 813 | |||
| 814 | # Add the prior loss to the instance loss. | ||
| 815 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 816 | else: | ||
| 817 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 818 | |||
| 819 | accelerator.backward(loss) | ||
| 820 | |||
| 821 | # Zero out the gradients for all token embeddings except the newly added | ||
| 822 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
| 823 | if accelerator.num_processes > 1: | ||
| 824 | grads = text_encoder.module.get_input_embeddings().weight.grad | ||
| 825 | else: | ||
| 826 | grads = text_encoder.get_input_embeddings().weight.grad | ||
| 827 | # Get the index for tokens that we want to zero the grads for | ||
| 828 | index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id | ||
| 829 | grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) | ||
| 830 | |||
| 831 | if accelerator.sync_gradients: | ||
| 832 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | ||
| 833 | |||
| 834 | optimizer.step() | ||
| 835 | if not accelerator.optimizer_step_was_skipped: | ||
| 836 | lr_scheduler.step() | ||
| 837 | optimizer.zero_grad(set_to_none=True) | ||
| 838 | |||
| 839 | loss = loss.detach().item() | ||
| 840 | train_loss += loss | ||
| 841 | |||
| 842 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 843 | if accelerator.sync_gradients: | ||
| 844 | if args.use_ema: | ||
| 845 | ema_unet.step(unet) | ||
| 846 | |||
| 847 | local_progress_bar.update(1) | ||
| 848 | global_progress_bar.update(1) | ||
| 849 | |||
| 850 | global_step += 1 | ||
| 851 | |||
| 852 | if global_step % args.sample_frequency == 0: | ||
| 853 | sample_checkpoint = True | ||
| 854 | |||
| 855 | logs = { | ||
| 856 | "train/loss": loss, | ||
| 857 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
| 858 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
| 859 | } | ||
| 860 | if args.use_ema: | ||
| 861 | logs["ema_decay"] = ema_unet.decay | ||
| 862 | |||
| 863 | accelerator.log(logs, step=global_step) | ||
| 864 | |||
| 865 | local_progress_bar.set_postfix(**logs) | ||
| 866 | |||
| 867 | if global_step >= args.max_train_steps: | ||
| 868 | break | ||
| 869 | |||
| 870 | train_loss /= len(train_dataloader) | ||
| 871 | |||
| 872 | accelerator.wait_for_everyone() | ||
| 873 | |||
| 874 | text_encoder.eval() | ||
| 875 | val_loss = 0.0 | ||
| 876 | |||
| 877 | for step, batch in enumerate(val_dataloader): | ||
| 878 | with torch.no_grad(): | ||
| 879 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 880 | latents = latents * 0.18215 | ||
| 881 | |||
| 882 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 883 | bsz = latents.shape[0] | ||
| 884 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 885 | (bsz,), device=latents.device) | ||
| 886 | timesteps = timesteps.long() | ||
| 887 | |||
| 888 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 889 | |||
| 890 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 891 | |||
| 892 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 893 | |||
| 894 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
| 895 | |||
| 896 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 897 | |||
| 898 | loss = loss.detach().item() | ||
| 899 | val_loss += loss | ||
| 900 | |||
| 901 | if accelerator.sync_gradients: | ||
| 902 | local_progress_bar.update(1) | ||
| 903 | global_progress_bar.update(1) | ||
| 904 | |||
| 905 | logs = {"val/loss": loss} | ||
| 906 | local_progress_bar.set_postfix(**logs) | ||
| 907 | |||
| 908 | val_loss /= len(val_dataloader) | ||
| 909 | |||
| 910 | accelerator.log({"val/loss": val_loss}, step=global_step) | ||
| 911 | |||
| 912 | local_progress_bar.clear() | ||
| 913 | global_progress_bar.clear() | ||
| 914 | |||
| 915 | if min_val_loss > val_loss: | ||
| 916 | min_val_loss = val_loss | ||
| 917 | |||
| 918 | if sample_checkpoint and accelerator.is_main_process: | ||
| 919 | checkpointer.save_samples( | ||
| 920 | global_step + global_step_offset, | ||
| 921 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 922 | |||
| 923 | # Create the pipeline using using the trained modules and save it. | ||
| 924 | if accelerator.is_main_process: | ||
| 925 | print("Finished! Saving final checkpoint and resume state.") | ||
| 926 | checkpointer.checkpoint() | ||
| 927 | |||
| 928 | accelerator.end_training() | ||
| 929 | |||
| 930 | except KeyboardInterrupt: | ||
| 931 | if accelerator.is_main_process: | ||
| 932 | print("Interrupted, saving checkpoint and resume state...") | ||
| 933 | checkpointer.checkpoint() | ||
| 934 | accelerator.end_training() | ||
| 935 | quit() | ||
| 936 | |||
| 937 | |||
| 938 | if __name__ == "__main__": | ||
| 939 | main() | ||
| @@ -205,10 +205,10 @@ def load_embeddings(tokenizer, text_encoder, embeddings_dir): | |||
| 205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): | 205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): |
| 206 | print("Loading Stable Diffusion pipeline...") | 206 | print("Loading Stable Diffusion pipeline...") |
| 207 | 207 | ||
| 208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='/tokenizer', torch_dtype=dtype) | 208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='tokenizer', torch_dtype=dtype) |
| 209 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='/text_encoder', torch_dtype=dtype) | 209 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='text_encoder', torch_dtype=dtype) |
| 210 | vae = AutoencoderKL.from_pretrained(model, subfolder='/vae', torch_dtype=dtype) | 210 | vae = AutoencoderKL.from_pretrained(model, subfolder='vae', torch_dtype=dtype) |
| 211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='/unet', torch_dtype=dtype) | 211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) |
| 212 | 212 | ||
| 213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) | 213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) |
| 214 | 214 | ||
diff --git a/textual_inversion.py b/textual_inversion.py index 3a3741d..181a318 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
| @@ -111,7 +111,7 @@ def parse_args(): | |||
| 111 | parser.add_argument( | 111 | parser.add_argument( |
| 112 | "--max_train_steps", | 112 | "--max_train_steps", |
| 113 | type=int, | 113 | type=int, |
| 114 | default=3000, | 114 | default=10000, |
| 115 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 115 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
| 116 | ) | 116 | ) |
| 117 | parser.add_argument( | 117 | parser.add_argument( |
| @@ -128,7 +128,7 @@ def parse_args(): | |||
| 128 | parser.add_argument( | 128 | parser.add_argument( |
| 129 | "--learning_rate", | 129 | "--learning_rate", |
| 130 | type=float, | 130 | type=float, |
| 131 | default=5e-5, | 131 | default=1e-4, |
| 132 | help="Initial learning rate (after the potential warmup period) to use.", | 132 | help="Initial learning rate (after the potential warmup period) to use.", |
| 133 | ) | 133 | ) |
| 134 | parser.add_argument( | 134 | parser.add_argument( |
| @@ -247,6 +247,11 @@ def parse_args(): | |||
| 247 | help="The weight of prior preservation loss." | 247 | help="The weight of prior preservation loss." |
| 248 | ) | 248 | ) |
| 249 | parser.add_argument( | 249 | parser.add_argument( |
| 250 | "--noise_timesteps", | ||
| 251 | type=int, | ||
| 252 | default=1000, | ||
| 253 | ) | ||
| 254 | parser.add_argument( | ||
| 250 | "--resume_from", | 255 | "--resume_from", |
| 251 | type=str, | 256 | type=str, |
| 252 | default=None, | 257 | default=None, |
| @@ -568,7 +573,7 @@ def main(): | |||
| 568 | beta_start=0.00085, | 573 | beta_start=0.00085, |
| 569 | beta_end=0.012, | 574 | beta_end=0.012, |
| 570 | beta_schedule="scaled_linear", | 575 | beta_schedule="scaled_linear", |
| 571 | num_train_timesteps=1000 | 576 | num_train_timesteps=args.noise_timesteps |
| 572 | ) | 577 | ) |
| 573 | 578 | ||
| 574 | def collate_fn(examples): | 579 | def collate_fn(examples): |
