diff options
author | Volpeon <git@volpeon.ink> | 2023-06-22 07:33:29 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-06-22 07:33:29 +0200 |
commit | 186a69104530610f8c2b924f79a04f941e5238c8 (patch) | |
tree | f04de211c4f33151c5163be222f7297087edb7d4 /models | |
parent | Update (diff) | |
download | textual-inversion-diff-186a69104530610f8c2b924f79a04f941e5238c8.tar.gz textual-inversion-diff-186a69104530610f8c2b924f79a04f941e5238c8.tar.bz2 textual-inversion-diff-186a69104530610f8c2b924f79a04f941e5238c8.zip |
Remove convnext
Diffstat (limited to 'models')
-rw-r--r-- | models/attention/control.py | 216 | ||||
-rw-r--r-- | models/attention/hook.py | 63 | ||||
-rw-r--r-- | models/attention/structured.py | 145 | ||||
-rw-r--r-- | models/convnext/discriminator.py | 34 |
4 files changed, 0 insertions, 458 deletions
diff --git a/models/attention/control.py b/models/attention/control.py deleted file mode 100644 index ec378c4..0000000 --- a/models/attention/control.py +++ /dev/null | |||
@@ -1,216 +0,0 @@ | |||
1 | import torch | ||
2 | import abc | ||
3 | |||
4 | |||
5 | class AttentionControl(abc.ABC): | ||
6 | def step_callback(self, x_t): | ||
7 | return x_t | ||
8 | |||
9 | def between_steps(self): | ||
10 | return | ||
11 | |||
12 | @property | ||
13 | def num_uncond_att_layers(self): | ||
14 | return self.num_att_layers if LOW_RESOURCE else 0 | ||
15 | |||
16 | @abc.abstractmethod | ||
17 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
18 | raise NotImplementedError | ||
19 | |||
20 | def __call__(self, attn, is_cross: bool, place_in_unet: str): | ||
21 | if self.cur_att_layer >= self.num_uncond_att_layers: | ||
22 | if LOW_RESOURCE: | ||
23 | attn = self.forward(attn, is_cross, place_in_unet) | ||
24 | else: | ||
25 | h = attn.shape[0] | ||
26 | attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet) | ||
27 | self.cur_att_layer += 1 | ||
28 | if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | ||
29 | self.cur_att_layer = 0 | ||
30 | self.cur_step += 1 | ||
31 | self.between_steps() | ||
32 | return attn | ||
33 | |||
34 | def reset(self): | ||
35 | self.cur_step = 0 | ||
36 | self.cur_att_layer = 0 | ||
37 | |||
38 | def __init__(self): | ||
39 | self.cur_step = 0 | ||
40 | self.num_att_layers = -1 | ||
41 | self.cur_att_layer = 0 | ||
42 | |||
43 | |||
44 | class EmptyControl(AttentionControl): | ||
45 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
46 | return attn | ||
47 | |||
48 | |||
49 | class AttentionStore(AttentionControl): | ||
50 | @staticmethod | ||
51 | def get_empty_store(): | ||
52 | return { | ||
53 | "down_cross": [], | ||
54 | "mid_cross": [], | ||
55 | "up_cross": [], | ||
56 | "down_self": [], | ||
57 | "mid_self": [], | ||
58 | "up_self": [], | ||
59 | } | ||
60 | |||
61 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
62 | key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | ||
63 | if attn.shape[1] <= 32**2: # avoid memory overhead | ||
64 | self.step_store[key].append(attn) | ||
65 | return attn | ||
66 | |||
67 | def between_steps(self): | ||
68 | if len(self.attention_store) == 0: | ||
69 | self.attention_store = self.step_store | ||
70 | else: | ||
71 | for key in self.attention_store: | ||
72 | for i in range(len(self.attention_store[key])): | ||
73 | self.attention_store[key][i] += self.step_store[key][i] | ||
74 | self.step_store = self.get_empty_store() | ||
75 | |||
76 | def get_average_attention(self): | ||
77 | average_attention = { | ||
78 | key: [item / self.cur_step for item in self.attention_store[key]] | ||
79 | for key in self.attention_store | ||
80 | } | ||
81 | return average_attention | ||
82 | |||
83 | def reset(self): | ||
84 | super(AttentionStore, self).reset() | ||
85 | self.step_store = self.get_empty_store() | ||
86 | self.attention_store = {} | ||
87 | |||
88 | def __init__(self): | ||
89 | super(AttentionStore, self).__init__() | ||
90 | self.step_store = self.get_empty_store() | ||
91 | self.attention_store = {} | ||
92 | |||
93 | |||
94 | class AttentionControlEdit(AttentionStore, abc.ABC): | ||
95 | def step_callback(self, x_t): | ||
96 | if self.local_blend is not None: | ||
97 | x_t = self.local_blend(x_t, self.attention_store) | ||
98 | return x_t | ||
99 | |||
100 | def replace_self_attention(self, attn_base, att_replace): | ||
101 | if att_replace.shape[2] <= 16**2: | ||
102 | return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | ||
103 | else: | ||
104 | return att_replace | ||
105 | |||
106 | @abc.abstractmethod | ||
107 | def replace_cross_attention(self, attn_base, att_replace): | ||
108 | raise NotImplementedError | ||
109 | |||
110 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
111 | super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | ||
112 | if is_cross or ( | ||
113 | self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1] | ||
114 | ): | ||
115 | h = attn.shape[0] // (self.batch_size) | ||
116 | attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | ||
117 | attn_base, attn_repalce = attn[0], attn[1:] | ||
118 | if is_cross: | ||
119 | alpha_words = self.cross_replace_alpha[self.cur_step] | ||
120 | attn_repalce_new = ( | ||
121 | self.replace_cross_attention(attn_base, attn_repalce) * alpha_words | ||
122 | + (1 - alpha_words) * attn_repalce | ||
123 | ) | ||
124 | attn[1:] = attn_repalce_new | ||
125 | else: | ||
126 | attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | ||
127 | attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | ||
128 | return attn | ||
129 | |||
130 | def __init__( | ||
131 | self, | ||
132 | prompts, | ||
133 | num_steps: int, | ||
134 | cross_replace_steps: Union[ | ||
135 | float, Tuple[float, float], Dict[str, Tuple[float, float]] | ||
136 | ], | ||
137 | self_replace_steps: Union[float, Tuple[float, float]], | ||
138 | local_blend: Optional[LocalBlend], | ||
139 | ): | ||
140 | super(AttentionControlEdit, self).__init__() | ||
141 | self.batch_size = len(prompts) | ||
142 | self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha( | ||
143 | prompts, num_steps, cross_replace_steps, tokenizer | ||
144 | ).to(device) | ||
145 | if type(self_replace_steps) is float: | ||
146 | self_replace_steps = 0, self_replace_steps | ||
147 | self.num_self_replace = int(num_steps * self_replace_steps[0]), int( | ||
148 | num_steps * self_replace_steps[1] | ||
149 | ) | ||
150 | self.local_blend = local_blend | ||
151 | |||
152 | |||
153 | class AttentionReplace(AttentionControlEdit): | ||
154 | def replace_cross_attention(self, attn_base, att_replace): | ||
155 | return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper) | ||
156 | |||
157 | def __init__( | ||
158 | self, | ||
159 | prompts, | ||
160 | num_steps: int, | ||
161 | cross_replace_steps: float, | ||
162 | self_replace_steps: float, | ||
163 | local_blend: Optional[LocalBlend] = None, | ||
164 | ): | ||
165 | super(AttentionReplace, self).__init__( | ||
166 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
167 | ) | ||
168 | self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | ||
169 | |||
170 | |||
171 | class AttentionRefine(AttentionControlEdit): | ||
172 | def replace_cross_attention(self, attn_base, att_replace): | ||
173 | attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | ||
174 | attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | ||
175 | return attn_replace | ||
176 | |||
177 | def __init__( | ||
178 | self, | ||
179 | prompts, | ||
180 | num_steps: int, | ||
181 | cross_replace_steps: float, | ||
182 | self_replace_steps: float, | ||
183 | local_blend: Optional[LocalBlend] = None, | ||
184 | ): | ||
185 | super(AttentionRefine, self).__init__( | ||
186 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
187 | ) | ||
188 | self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | ||
189 | self.mapper, alphas = self.mapper.to(device), alphas.to(device) | ||
190 | self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | ||
191 | |||
192 | |||
193 | class AttentionReweight(AttentionControlEdit): | ||
194 | def replace_cross_attention(self, attn_base, att_replace): | ||
195 | if self.prev_controller is not None: | ||
196 | attn_base = self.prev_controller.replace_cross_attention( | ||
197 | attn_base, att_replace | ||
198 | ) | ||
199 | attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | ||
200 | return attn_replace | ||
201 | |||
202 | def __init__( | ||
203 | self, | ||
204 | prompts, | ||
205 | num_steps: int, | ||
206 | cross_replace_steps: float, | ||
207 | self_replace_steps: float, | ||
208 | equalizer, | ||
209 | local_blend: Optional[LocalBlend] = None, | ||
210 | controller: Optional[AttentionControlEdit] = None, | ||
211 | ): | ||
212 | super(AttentionReweight, self).__init__( | ||
213 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
214 | ) | ||
215 | self.equalizer = equalizer.to(device) | ||
216 | self.prev_controller = controller | ||
diff --git a/models/attention/hook.py b/models/attention/hook.py deleted file mode 100644 index 6b5fb68..0000000 --- a/models/attention/hook.py +++ /dev/null | |||
@@ -1,63 +0,0 @@ | |||
1 | import torch | ||
2 | |||
3 | |||
4 | try: | ||
5 | import xformers.ops | ||
6 | |||
7 | xformers._is_functorch_available = True | ||
8 | MEM_EFFICIENT_ATTN = True | ||
9 | except ImportError: | ||
10 | print("[!] Not using xformers memory efficient attention.") | ||
11 | MEM_EFFICIENT_ATTN = False | ||
12 | |||
13 | |||
14 | def register_attention_control(model, controller): | ||
15 | def ca_forward(self, place_in_unet): | ||
16 | def forward(x, context=None, mask=None): | ||
17 | batch_size, sequence_length, dim = x.shape | ||
18 | h = self.heads | ||
19 | q = self.to_q(x) | ||
20 | is_cross = context is not None | ||
21 | context = context if is_cross else x | ||
22 | k = self.to_k(context) | ||
23 | v = self.to_v(context) | ||
24 | q = self.reshape_heads_to_batch_dim(q) | ||
25 | k = self.reshape_heads_to_batch_dim(k) | ||
26 | v = self.reshape_heads_to_batch_dim(v) | ||
27 | |||
28 | sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
29 | |||
30 | if mask is not None: | ||
31 | mask = mask.reshape(batch_size, -1) | ||
32 | max_neg_value = -torch.finfo(sim.dtype).max | ||
33 | mask = mask[:, None, :].repeat(h, 1, 1) | ||
34 | sim.masked_fill_(~mask, max_neg_value) | ||
35 | |||
36 | # attention, what we cannot get enough of | ||
37 | attn = sim.softmax(dim=-1) | ||
38 | attn = controller(attn, is_cross, place_in_unet) | ||
39 | out = torch.einsum("b i j, b j d -> b i d", attn, v) | ||
40 | out = self.reshape_batch_dim_to_heads(out) | ||
41 | return self.to_out(out) | ||
42 | |||
43 | return forward | ||
44 | |||
45 | def register_recr(net_, count, place_in_unet): | ||
46 | if net_.__class__.__name__ == "CrossAttention": | ||
47 | net_.forward = ca_forward(net_, place_in_unet) | ||
48 | return count + 1 | ||
49 | elif hasattr(net_, "children"): | ||
50 | for net__ in net_.children(): | ||
51 | count = register_recr(net__, count, place_in_unet) | ||
52 | return count | ||
53 | |||
54 | cross_att_count = 0 | ||
55 | sub_nets = model.unet.named_children() | ||
56 | for net in sub_nets: | ||
57 | if "down" in net[0]: | ||
58 | cross_att_count += register_recr(net[1], 0, "down") | ||
59 | elif "up" in net[0]: | ||
60 | cross_att_count += register_recr(net[1], 0, "up") | ||
61 | elif "mid" in net[0]: | ||
62 | cross_att_count += register_recr(net[1], 0, "mid") | ||
63 | controller.num_att_layers = cross_att_count | ||
diff --git a/models/attention/structured.py b/models/attention/structured.py deleted file mode 100644 index 5bbbc06..0000000 --- a/models/attention/structured.py +++ /dev/null | |||
@@ -1,145 +0,0 @@ | |||
1 | import torch | ||
2 | |||
3 | from .control import AttentionControl | ||
4 | |||
5 | |||
6 | class StructuredAttentionControl(AttentionControl): | ||
7 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
8 | return attn | ||
9 | |||
10 | def forward(self, x, context=None, mask=None): | ||
11 | h = self.heads | ||
12 | |||
13 | q = self.to_q(x) | ||
14 | |||
15 | if isinstance(context, list): | ||
16 | if self.struct_attn: | ||
17 | out = self.struct_qkv(q, context, mask) | ||
18 | else: | ||
19 | context = torch.cat( | ||
20 | [context[0], context[1]["k"][0]], dim=0 | ||
21 | ) # use key tensor for context | ||
22 | out = self.normal_qkv(q, context, mask) | ||
23 | else: | ||
24 | context = default(context, x) | ||
25 | out = self.normal_qkv(q, context, mask) | ||
26 | |||
27 | return self.to_out(out) | ||
28 | |||
29 | def struct_qkv(self, q, context, mask): | ||
30 | """ | ||
31 | context: list of [uc, list of conditional context] | ||
32 | """ | ||
33 | uc_context = context[0] | ||
34 | context_k, context_v = context[1]["k"], context[1]["v"] | ||
35 | |||
36 | if isinstance(context_k, list) and isinstance(context_v, list): | ||
37 | out = self.multi_qkv(q, uc_context, context_k, context_v, mask) | ||
38 | elif isinstance(context_k, torch.Tensor) and isinstance( | ||
39 | context_v, torch.Tensor | ||
40 | ): | ||
41 | out = self.heterogeous_qkv(q, uc_context, context_k, context_v, mask) | ||
42 | else: | ||
43 | raise NotImplementedError | ||
44 | |||
45 | return out | ||
46 | |||
47 | def multi_qkv(self, q, uc_context, context_k, context_v, mask): | ||
48 | h = self.heads | ||
49 | |||
50 | assert uc_context.size(0) == context_k[0].size(0) == context_v[0].size(0) | ||
51 | true_bs = uc_context.size(0) * h | ||
52 | |||
53 | k_uc, v_uc = self.get_kv(uc_context) | ||
54 | k_c = [self.to_k(c_k) for c_k in context_k] | ||
55 | v_c = [self.to_v(c_v) for c_v in context_v] | ||
56 | |||
57 | q = rearrange(q, "b n (h d) -> (b h) n d", h=h) | ||
58 | |||
59 | k_uc = rearrange(k_uc, "b n (h d) -> (b h) n d", h=h) | ||
60 | v_uc = rearrange(v_uc, "b n (h d) -> (b h) n d", h=h) | ||
61 | |||
62 | k_c = [ | ||
63 | rearrange(k, "b n (h d) -> (b h) n d", h=h) for k in k_c | ||
64 | ] # NOTE: modification point | ||
65 | v_c = [rearrange(v, "b n (h d) -> (b h) n d", h=h) for v in v_c] | ||
66 | |||
67 | # get composition | ||
68 | sim_uc = einsum("b i d, b j d -> b i j", q[:true_bs], k_uc) * self.scale | ||
69 | sim_c = [ | ||
70 | einsum("b i d, b j d -> b i j", q[true_bs:], k) * self.scale for k in k_c | ||
71 | ] | ||
72 | |||
73 | attn_uc = sim_uc.softmax(dim=-1) | ||
74 | attn_c = [sim.softmax(dim=-1) for sim in sim_c] | ||
75 | |||
76 | # get uc output | ||
77 | out_uc = einsum("b i j, b j d -> b i d", attn_uc, v_uc) | ||
78 | |||
79 | # get c output | ||
80 | if len(v_c) == 1: | ||
81 | out_c_collect = [] | ||
82 | for attn in attn_c: | ||
83 | for v in v_c: | ||
84 | out_c_collect.append(einsum("b i j, b j d -> b i d", attn, v)) | ||
85 | out_c = sum(out_c_collect) / len(out_c_collect) | ||
86 | else: | ||
87 | out_c = sum( | ||
88 | [ | ||
89 | einsum("b i j, b j d -> b i d", attn, v) | ||
90 | for attn, v in zip(attn_c, v_c) | ||
91 | ] | ||
92 | ) / len(v_c) | ||
93 | |||
94 | out = torch.cat([out_uc, out_c], dim=0) | ||
95 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
96 | |||
97 | return out | ||
98 | |||
99 | def normal_qkv(self, q, context, mask): | ||
100 | h = self.heads | ||
101 | k = self.to_k(context) | ||
102 | v = self.to_v(context) | ||
103 | |||
104 | q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | ||
105 | |||
106 | sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
107 | |||
108 | if exists(mask): | ||
109 | mask = rearrange(mask, "b ... -> b (...)") | ||
110 | max_neg_value = -torch.finfo(sim.dtype).max | ||
111 | mask = repeat(mask, "b j -> (b h) () j", h=h) | ||
112 | sim.masked_fill_(~mask, max_neg_value) | ||
113 | |||
114 | # attention, what we cannot get enough of | ||
115 | attn = sim.softmax(dim=-1) | ||
116 | |||
117 | out = einsum("b i j, b j d -> b i d", attn, v) | ||
118 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
119 | |||
120 | return out | ||
121 | |||
122 | def heterogeous_qkv(self, q, uc_context, context_k, context_v, mask): | ||
123 | h = self.heads | ||
124 | k = self.to_k(torch.cat([uc_context, context_k], dim=0)) | ||
125 | v = self.to_v(torch.cat([uc_context, context_v], dim=0)) | ||
126 | |||
127 | q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | ||
128 | |||
129 | sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
130 | |||
131 | if exists(mask): | ||
132 | mask = rearrange(mask, "b ... -> b (...)") | ||
133 | max_neg_value = -torch.finfo(sim.dtype).max | ||
134 | mask = repeat(mask, "b j -> (b h) () j", h=h) | ||
135 | sim.masked_fill_(~mask, max_neg_value) | ||
136 | |||
137 | # attention, what we cannot get enough of | ||
138 | attn = sim.softmax(dim=-1) | ||
139 | |||
140 | out = einsum("b i j, b j d -> b i d", attn, v) | ||
141 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
142 | return out | ||
143 | |||
144 | def get_kv(self, context): | ||
145 | return self.to_k(context), self.to_v(context) | ||
diff --git a/models/convnext/discriminator.py b/models/convnext/discriminator.py deleted file mode 100644 index 5798bcf..0000000 --- a/models/convnext/discriminator.py +++ /dev/null | |||
@@ -1,34 +0,0 @@ | |||
1 | import torch | ||
2 | from timm.models import ConvNeXt | ||
3 | from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||
4 | |||
5 | from torch.nn import functional as F | ||
6 | |||
7 | |||
8 | class ConvNeXtDiscriminator: | ||
9 | def __init__(self, model: ConvNeXt, input_size: int) -> None: | ||
10 | self.net = model | ||
11 | |||
12 | self.input_size = input_size | ||
13 | |||
14 | self.img_mean = torch.tensor(IMAGENET_DEFAULT_MEAN).view(1, -1, 1, 1) | ||
15 | self.img_std = torch.tensor(IMAGENET_DEFAULT_STD).view(1, -1, 1, 1) | ||
16 | |||
17 | def get_score(self, img): | ||
18 | pred = self.get_all(img) | ||
19 | return torch.softmax(pred, dim=-1)[:, 1] | ||
20 | |||
21 | def get_all(self, img): | ||
22 | img_mean = self.img_mean.to(device=img.device, dtype=img.dtype) | ||
23 | img_std = self.img_std.to(device=img.device, dtype=img.dtype) | ||
24 | |||
25 | img = ((img + 1.0) / 2.0).sub(img_mean).div(img_std) | ||
26 | |||
27 | img = F.interpolate( | ||
28 | img, | ||
29 | size=(self.input_size, self.input_size), | ||
30 | mode="bicubic", | ||
31 | align_corners=True, | ||
32 | ) | ||
33 | pred = self.net(img) | ||
34 | return pred | ||