diff options
author | Volpeon <git@volpeon.ink> | 2022-10-26 11:11:33 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-10-26 11:11:33 +0200 |
commit | 49463992f48ec25f2ea31b220a6cedac3466467a (patch) | |
tree | a58f40e558c14403dbeda687708ef334371694b8 /schedulers | |
parent | Advanced datasets (diff) | |
download | textual-inversion-diff-49463992f48ec25f2ea31b220a6cedac3466467a.tar.gz textual-inversion-diff-49463992f48ec25f2ea31b220a6cedac3466467a.tar.bz2 textual-inversion-diff-49463992f48ec25f2ea31b220a6cedac3466467a.zip |
New Euler_a scheduler
Diffstat (limited to 'schedulers')
-rw-r--r-- | schedulers/scheduling_euler_a.py | 286 | ||||
-rw-r--r-- | schedulers/scheduling_euler_ancestral_discrete.py | 192 |
2 files changed, 192 insertions, 286 deletions
diff --git a/schedulers/scheduling_euler_a.py b/schedulers/scheduling_euler_a.py deleted file mode 100644 index c097a8a..0000000 --- a/schedulers/scheduling_euler_a.py +++ /dev/null | |||
@@ -1,286 +0,0 @@ | |||
1 | from typing import Optional, Tuple, Union | ||
2 | |||
3 | import numpy as np | ||
4 | import torch | ||
5 | |||
6 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
7 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | ||
8 | |||
9 | |||
10 | class EulerAScheduler(SchedulerMixin, ConfigMixin): | ||
11 | """ | ||
12 | Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and | ||
13 | the VE column of Table 1 from [1] for reference. | ||
14 | |||
15 | [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | ||
16 | https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic | ||
17 | differential equations." https://arxiv.org/abs/2011.13456 | ||
18 | |||
19 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
20 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
21 | [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | ||
22 | [`~ConfigMixin.from_config`] functions. | ||
23 | |||
24 | For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of | ||
25 | Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the | ||
26 | optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. | ||
27 | |||
28 | Args: | ||
29 | sigma_min (`float`): minimum noise magnitude | ||
30 | sigma_max (`float`): maximum noise magnitude | ||
31 | s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. | ||
32 | A reasonable range is [1.000, 1.011]. | ||
33 | s_churn (`float`): the parameter controlling the overall amount of stochasticity. | ||
34 | A reasonable range is [0, 100]. | ||
35 | s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). | ||
36 | A reasonable range is [0, 10]. | ||
37 | s_max (`float`): the end value of the sigma range where we add noise. | ||
38 | A reasonable range is [0.2, 80]. | ||
39 | |||
40 | """ | ||
41 | |||
42 | @register_to_config | ||
43 | def __init__( | ||
44 | self, | ||
45 | num_train_timesteps: int = 1000, | ||
46 | beta_start: float = 0.0001, | ||
47 | beta_end: float = 0.02, | ||
48 | beta_schedule: str = "linear", | ||
49 | trained_betas: Optional[np.ndarray] = None, | ||
50 | num_inference_steps=None, | ||
51 | device='cuda' | ||
52 | ): | ||
53 | if trained_betas is not None: | ||
54 | self.betas = torch.from_numpy(trained_betas).to(device) | ||
55 | if beta_schedule == "linear": | ||
56 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32, device=device) | ||
57 | elif beta_schedule == "scaled_linear": | ||
58 | # this schedule is very specific to the latent diffusion model. | ||
59 | self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, | ||
60 | dtype=torch.float32, device=device) ** 2 | ||
61 | else: | ||
62 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
63 | |||
64 | self.device = device | ||
65 | |||
66 | self.alphas = 1.0 - self.betas | ||
67 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
68 | |||
69 | # standard deviation of the initial noise distribution | ||
70 | self.init_noise_sigma = 1.0 | ||
71 | |||
72 | # setable values | ||
73 | self.num_inference_steps = num_inference_steps | ||
74 | self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() | ||
75 | # get sigmas | ||
76 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | ||
77 | self.sigmas = self.get_sigmas(self.DSsigmas, self.num_inference_steps) | ||
78 | |||
79 | # A# take number of steps as input | ||
80 | # A# store 1) number of steps 2) timesteps 3) schedule | ||
81 | |||
82 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs): | ||
83 | """ | ||
84 | Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
85 | |||
86 | Args: | ||
87 | num_inference_steps (`int`): | ||
88 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
89 | """ | ||
90 | |||
91 | self.num_inference_steps = num_inference_steps | ||
92 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | ||
93 | self.sigmas = self.get_sigmas(self.DSsigmas, self.num_inference_steps) | ||
94 | self.timesteps = self.sigmas[:-1] | ||
95 | self.is_scale_input_called = False | ||
96 | |||
97 | def scale_model_input(self, sample: torch.FloatTensor, timestep: int) -> torch.FloatTensor: | ||
98 | """ | ||
99 | Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | ||
100 | current timestep. | ||
101 | Args: | ||
102 | sample (`torch.FloatTensor`): input sample | ||
103 | timestep (`int`, optional): current timestep | ||
104 | Returns: | ||
105 | `torch.FloatTensor`: scaled input sample | ||
106 | """ | ||
107 | if isinstance(timestep, torch.Tensor): | ||
108 | timestep = timestep.to(self.timesteps.device) | ||
109 | if self.is_scale_input_called: | ||
110 | return sample | ||
111 | step_index = (self.timesteps == timestep).nonzero().item() | ||
112 | sigma = self.sigmas[step_index] | ||
113 | sample = sample * sigma | ||
114 | self.is_scale_input_called = True | ||
115 | return sample | ||
116 | |||
117 | def step( | ||
118 | self, | ||
119 | model_output: torch.FloatTensor, | ||
120 | timestep: Union[float, torch.FloatTensor], | ||
121 | sample: torch.FloatTensor, | ||
122 | generator: torch.Generator = None, | ||
123 | return_dict: bool = True, | ||
124 | ) -> Union[SchedulerOutput, Tuple]: | ||
125 | """ | ||
126 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | ||
127 | process from the learned model outputs (most often the predicted noise). | ||
128 | |||
129 | Args: | ||
130 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
131 | sigma_hat (`float`): TODO | ||
132 | sigma_prev (`float`): TODO | ||
133 | sample_hat (`torch.FloatTensor`): TODO | ||
134 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
135 | |||
136 | EulerAOutput: updated sample in the diffusion chain and derivative (TODO double check). | ||
137 | Returns: | ||
138 | [`~schedulers.scheduling_karras_ve.EulerAOutput`] or `tuple`: | ||
139 | [`~schedulers.scheduling_karras_ve.EulerAOutput`] if `return_dict` is True, otherwise a `tuple`. When | ||
140 | returning a tuple, the first element is the sample tensor. | ||
141 | |||
142 | """ | ||
143 | if isinstance(timestep, torch.Tensor): | ||
144 | timestep = timestep.to(self.timesteps.device) | ||
145 | step_index = (self.timesteps == timestep).nonzero().item() | ||
146 | step_prev_index = step_index + 1 | ||
147 | |||
148 | s = self.sigmas[step_index] | ||
149 | s_prev = self.sigmas[step_prev_index] | ||
150 | latents = sample | ||
151 | |||
152 | sigma_down, sigma_up = self.get_ancestral_step(s, s_prev) | ||
153 | d = self.to_d(latents, s, model_output) | ||
154 | dt = sigma_down - s | ||
155 | latents = latents + d * dt | ||
156 | latents = latents + torch.randn(latents.shape, layout=latents.layout, device=latents.device, dtype=latents.dtype, | ||
157 | generator=generator) * sigma_up | ||
158 | |||
159 | return SchedulerOutput(prev_sample=latents) | ||
160 | |||
161 | def step_correct( | ||
162 | self, | ||
163 | model_output: torch.FloatTensor, | ||
164 | sigma_hat: float, | ||
165 | sigma_prev: float, | ||
166 | sample_hat: torch.FloatTensor, | ||
167 | sample_prev: torch.FloatTensor, | ||
168 | derivative: torch.FloatTensor, | ||
169 | return_dict: bool = True, | ||
170 | ) -> Union[SchedulerOutput, Tuple]: | ||
171 | """ | ||
172 | Correct the predicted sample based on the output model_output of the network. TODO complete description | ||
173 | |||
174 | Args: | ||
175 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
176 | sigma_hat (`float`): TODO | ||
177 | sigma_prev (`float`): TODO | ||
178 | sample_hat (`torch.FloatTensor`): TODO | ||
179 | sample_prev (`torch.FloatTensor`): TODO | ||
180 | derivative (`torch.FloatTensor`): TODO | ||
181 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
182 | |||
183 | Returns: | ||
184 | prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO | ||
185 | |||
186 | """ | ||
187 | pred_original_sample = sample_prev + sigma_prev * model_output | ||
188 | derivative_corr = (sample_prev - pred_original_sample) / sigma_prev | ||
189 | sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) | ||
190 | |||
191 | if not return_dict: | ||
192 | return (sample_prev, derivative) | ||
193 | |||
194 | return SchedulerOutput(prev_sample=sample_prev) | ||
195 | |||
196 | def add_noise( | ||
197 | self, | ||
198 | original_samples: torch.FloatTensor, | ||
199 | noise: torch.FloatTensor, | ||
200 | timesteps: torch.FloatTensor, | ||
201 | ) -> torch.FloatTensor: | ||
202 | sigmas = self.sigmas.to(original_samples.device) | ||
203 | schedule_timesteps = self.timesteps.to(original_samples.device) | ||
204 | timesteps = timesteps.to(original_samples.device) | ||
205 | step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | ||
206 | |||
207 | sigma = sigmas[step_indices].flatten() | ||
208 | while len(sigma.shape) < len(original_samples.shape): | ||
209 | sigma = sigma.unsqueeze(-1) | ||
210 | |||
211 | noisy_samples = original_samples + noise * sigma | ||
212 | self.is_scale_input_called = True | ||
213 | return noisy_samples | ||
214 | |||
215 | # from k_samplers sampling.py | ||
216 | |||
217 | def get_ancestral_step(self, sigma_from, sigma_to): | ||
218 | """Calculates the noise level (sigma_down) to step down to and the amount | ||
219 | of noise to add (sigma_up) when doing an ancestral sampling step.""" | ||
220 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
221 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
222 | return sigma_down, sigma_up | ||
223 | |||
224 | def t_to_sigma(self, t, sigmas): | ||
225 | t = t.float() | ||
226 | low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac() | ||
227 | return (1 - w) * sigmas[low_idx] + w * sigmas[high_idx] | ||
228 | |||
229 | def append_zero(self, x): | ||
230 | return torch.cat([x, x.new_zeros([1])]) | ||
231 | |||
232 | def get_sigmas(self, sigmas, n=None): | ||
233 | if n is None: | ||
234 | return self.append_zero(sigmas.flip(0)) | ||
235 | t_max = len(sigmas) - 1 # = 999 | ||
236 | device = self.device | ||
237 | t = torch.linspace(t_max, 0, n, device=device) | ||
238 | # t = torch.linspace(t_max, 0, n, device=sigmas.device) | ||
239 | return self.append_zero(self.t_to_sigma(t, sigmas)) | ||
240 | |||
241 | # from k_samplers utils.py | ||
242 | def append_dims(self, x, target_dims): | ||
243 | """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | ||
244 | dims_to_append = target_dims - x.ndim | ||
245 | if dims_to_append < 0: | ||
246 | raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') | ||
247 | return x[(...,) + (None,) * dims_to_append] | ||
248 | |||
249 | # from k_samplers sampling.py | ||
250 | def to_d(self, x, sigma, denoised): | ||
251 | """Converts a denoiser output to a Karras ODE derivative.""" | ||
252 | return (x - denoised) / self.append_dims(sigma, x.ndim) | ||
253 | |||
254 | def get_scalings(self, sigma): | ||
255 | sigma_data = 1. | ||
256 | c_out = -sigma | ||
257 | c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5 | ||
258 | return c_out, c_in | ||
259 | |||
260 | # DiscreteSchedule DS | ||
261 | def DSsigma_to_t(self, sigma, quantize=None): | ||
262 | # quantize = self.quantize if quantize is None else quantize | ||
263 | quantize = False | ||
264 | dists = torch.abs(sigma - self.DSsigmas[:, None]) | ||
265 | if quantize: | ||
266 | return torch.argmin(dists, dim=0).view(sigma.shape) | ||
267 | low_idx, high_idx = torch.sort(torch.topk(dists, dim=0, k=2, largest=False).indices, dim=0)[0] | ||
268 | low, high = self.DSsigmas[low_idx], self.DSsigmas[high_idx] | ||
269 | w = (low - sigma) / (low - high) | ||
270 | w = w.clamp(0, 1) | ||
271 | t = (1 - w) * low_idx + w * high_idx | ||
272 | return t.view(sigma.shape) | ||
273 | |||
274 | def prepare_input(self, latent_in, t, batch_size): | ||
275 | sigma = t.reshape(1) # A# potential bug: doesn't work on samples > 1 | ||
276 | |||
277 | sigma_in = torch.cat([sigma] * 2 * batch_size) | ||
278 | # noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in, text_embeddings , guidance_scale,DSsigmas=self.scheduler.DSsigmas) | ||
279 | # noise_pred = DiscreteEpsDDPMDenoiserForward(self.unet,latent_model_input, sigma_in,DSsigmas=self.scheduler.DSsigmas, cond=cond_in) | ||
280 | c_out, c_in = [self.append_dims(x, latent_in.ndim) for x in self.get_scalings(sigma_in)] | ||
281 | |||
282 | sigma_in = self.DSsigma_to_t(sigma_in) | ||
283 | # s_in = latent_in.new_ones([latent_in.shape[0]]) | ||
284 | # sigma_in = sigma_in * s_in | ||
285 | |||
286 | return c_out, c_in, sigma_in | ||
diff --git a/schedulers/scheduling_euler_ancestral_discrete.py b/schedulers/scheduling_euler_ancestral_discrete.py new file mode 100644 index 0000000..3a2de68 --- /dev/null +++ b/schedulers/scheduling_euler_ancestral_discrete.py | |||
@@ -0,0 +1,192 @@ | |||
1 | # Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. | ||
2 | # | ||
3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
4 | # you may not use this file except in compliance with the License. | ||
5 | # You may obtain a copy of the License at | ||
6 | # | ||
7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
8 | # | ||
9 | # Unless required by applicable law or agreed to in writing, software | ||
10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
12 | # See the License for the specific language governing permissions and | ||
13 | # limitations under the License. | ||
14 | |||
15 | from typing import Optional, Tuple, Union | ||
16 | |||
17 | import numpy as np | ||
18 | import torch | ||
19 | |||
20 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
21 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | ||
22 | |||
23 | |||
24 | class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | ||
25 | """ | ||
26 | Ancestral sampling with Euler method steps. | ||
27 | for discrete beta schedules. Based on the original k-diffusion implementation by | ||
28 | Katherine Crowson: | ||
29 | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 | ||
30 | |||
31 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
32 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
33 | [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | ||
34 | [`~ConfigMixin.from_config`] functions. | ||
35 | |||
36 | Args: | ||
37 | num_train_timesteps (`int`): number of diffusion steps used to train the model. | ||
38 | beta_start (`float`): the starting `beta` value of inference. | ||
39 | beta_end (`float`): the final `beta` value. | ||
40 | beta_schedule (`str`): | ||
41 | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | ||
42 | `linear` or `scaled_linear`. | ||
43 | trained_betas (`np.ndarray`, optional): | ||
44 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | ||
45 | options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, | ||
46 | `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | ||
47 | tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. | ||
48 | |||
49 | """ | ||
50 | |||
51 | @register_to_config | ||
52 | def __init__( | ||
53 | self, | ||
54 | num_train_timesteps: int = 1000, | ||
55 | beta_start: float = 0.00085, # sensible defaults | ||
56 | beta_end: float = 0.012, | ||
57 | beta_schedule: str = "linear", | ||
58 | trained_betas: Optional[np.ndarray] = None, | ||
59 | ): | ||
60 | if trained_betas is not None: | ||
61 | self.betas = torch.from_numpy(trained_betas) | ||
62 | elif beta_schedule == "linear": | ||
63 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | ||
64 | elif beta_schedule == "scaled_linear": | ||
65 | # this schedule is very specific to the latent diffusion model. | ||
66 | self.betas = ( | ||
67 | torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | ||
68 | ) | ||
69 | else: | ||
70 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
71 | |||
72 | self.alphas = 1.0 - self.betas | ||
73 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
74 | |||
75 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
76 | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | ||
77 | self.sigmas = torch.from_numpy(sigmas) | ||
78 | |||
79 | self.init_noise_sigma = None | ||
80 | |||
81 | # setable values | ||
82 | self.num_inference_steps = None | ||
83 | timesteps = np.arange(0, num_train_timesteps)[::-1].copy() | ||
84 | self.timesteps = torch.from_numpy(timesteps) | ||
85 | self.derivatives = [] | ||
86 | self.is_scale_input_called = False | ||
87 | |||
88 | def scale_model_input( | ||
89 | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], step_index: Union[int, torch.IntTensor] | ||
90 | ) -> torch.FloatTensor: | ||
91 | """ | ||
92 | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. | ||
93 | |||
94 | Args: | ||
95 | sample (`torch.FloatTensor`): input sample | ||
96 | timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain | ||
97 | |||
98 | Returns: | ||
99 | `torch.FloatTensor`: scaled input sample | ||
100 | """ | ||
101 | sigma = self.sigmas[step_index] | ||
102 | sample = sample / ((sigma**2 + 1) ** 0.5) | ||
103 | return sample | ||
104 | |||
105 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | ||
106 | """ | ||
107 | Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
108 | |||
109 | Args: | ||
110 | num_inference_steps (`int`): | ||
111 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
112 | """ | ||
113 | self.num_inference_steps = num_inference_steps | ||
114 | self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) | ||
115 | |||
116 | low_idx = np.floor(self.timesteps).astype(int) | ||
117 | high_idx = np.ceil(self.timesteps).astype(int) | ||
118 | frac = np.mod(self.timesteps, 1.0) | ||
119 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
120 | sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] | ||
121 | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | ||
122 | self.sigmas = torch.from_numpy(sigmas) | ||
123 | self.timesteps = torch.from_numpy(self.timesteps) | ||
124 | self.init_noise_sigma = self.sigmas[0] | ||
125 | self.derivatives = [] | ||
126 | |||
127 | def step( | ||
128 | self, | ||
129 | model_output: Union[torch.FloatTensor, np.ndarray], | ||
130 | timestep: Union[float, torch.FloatTensor], | ||
131 | step_index: Union[int, torch.IntTensor], | ||
132 | sample: Union[torch.FloatTensor, np.ndarray], | ||
133 | return_dict: bool = True, | ||
134 | ) -> Union[SchedulerOutput, Tuple]: | ||
135 | """ | ||
136 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | ||
137 | process from the learned model outputs (most often the predicted noise). | ||
138 | |||
139 | Args: | ||
140 | model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | ||
141 | timestep (`int`): current discrete timestep in the diffusion chain. | ||
142 | sample (`torch.FloatTensor` or `np.ndarray`): | ||
143 | current instance of sample being created by diffusion process. | ||
144 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
145 | |||
146 | Returns: | ||
147 | [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | ||
148 | [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | ||
149 | returning a tuple, the first element is the sample tensor. | ||
150 | |||
151 | """ | ||
152 | sigma = self.sigmas[step_index] | ||
153 | |||
154 | # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | ||
155 | pred_original_sample = sample - sigma * model_output | ||
156 | sigma_from = self.sigmas[step_index] | ||
157 | sigma_to = self.sigmas[step_index + 1] | ||
158 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
159 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
160 | # 2. Convert to an ODE derivative | ||
161 | derivative = (sample - pred_original_sample) / sigma | ||
162 | self.derivatives.append(derivative) | ||
163 | |||
164 | dt = sigma_down - sigma | ||
165 | |||
166 | prev_sample = sample + derivative * dt | ||
167 | |||
168 | prev_sample = prev_sample + torch.randn_like(prev_sample) * sigma_up | ||
169 | |||
170 | if not return_dict: | ||
171 | return (prev_sample,) | ||
172 | |||
173 | return SchedulerOutput(prev_sample=prev_sample) | ||
174 | |||
175 | def add_noise( | ||
176 | self, | ||
177 | original_samples: torch.FloatTensor, | ||
178 | noise: torch.FloatTensor, | ||
179 | timesteps: torch.IntTensor, | ||
180 | ) -> torch.FloatTensor: | ||
181 | # Make sure sigmas and timesteps have the same device and dtype as original_samples | ||
182 | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | ||
183 | self.timesteps = self.timesteps.to(original_samples.device) | ||
184 | sigma = self.sigmas[timesteps].flatten() | ||
185 | while len(sigma.shape) < len(original_samples.shape): | ||
186 | sigma = sigma.unsqueeze(-1) | ||
187 | |||
188 | noisy_samples = original_samples + noise * sigma | ||
189 | return noisy_samples | ||
190 | |||
191 | def __len__(self): | ||
192 | return self.config.num_train_timesteps | ||