diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-15 10:12:04 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-15 10:12:04 +0100 |
| commit | 34648b763fa60e3161a5b5f1243ed1b5c3b0188e (patch) | |
| tree | 4c2b8104a8d1af26955561959591249d9281a02f /train_ti.py | |
| parent | Added functional trainer (diff) | |
| download | textual-inversion-diff-34648b763fa60e3161a5b5f1243ed1b5c3b0188e.tar.gz textual-inversion-diff-34648b763fa60e3161a5b5f1243ed1b5c3b0188e.tar.bz2 textual-inversion-diff-34648b763fa60e3161a5b5f1243ed1b5c3b0188e.zip | |
Added functional TI strategy
Diffstat (limited to 'train_ti.py')
| -rw-r--r-- | train_ti.py | 108 |
1 files changed, 30 insertions, 78 deletions
diff --git a/train_ti.py b/train_ti.py index 97e4e72..2fd325b 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -17,7 +17,8 @@ from slugify import slugify | |||
| 17 | from util import load_config, load_embeddings_from_dir | 17 | from util import load_config, load_embeddings_from_dir |
| 18 | from data.csv import VlpnDataModule, VlpnDataItem | 18 | from data.csv import VlpnDataModule, VlpnDataItem |
| 19 | from trainer_old.base import Checkpointer | 19 | from trainer_old.base import Checkpointer |
| 20 | from training.functional import train, loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models | 20 | from training.functional import train, generate_class_images, add_placeholder_tokens, get_models |
| 21 | from training.strategy.ti import textual_inversion_strategy | ||
| 21 | from training.optimization import get_scheduler | 22 | from training.optimization import get_scheduler |
| 22 | from training.lr import LRFinder | 23 | from training.lr import LRFinder |
| 23 | from training.util import EMAModel, save_args | 24 | from training.util import EMAModel, save_args |
| @@ -387,6 +388,11 @@ def parse_args(): | |||
| 387 | help="The weight of prior preservation loss." | 388 | help="The weight of prior preservation loss." |
| 388 | ) | 389 | ) |
| 389 | parser.add_argument( | 390 | parser.add_argument( |
| 391 | "--use_emb_decay", | ||
| 392 | action="store_true", | ||
| 393 | help="Whether to use embedding decay." | ||
| 394 | ) | ||
| 395 | parser.add_argument( | ||
| 390 | "--emb_decay_target", | 396 | "--emb_decay_target", |
| 391 | default=0.4, | 397 | default=0.4, |
| 392 | type=float, | 398 | type=float, |
| @@ -591,14 +597,6 @@ def main(): | |||
| 591 | else: | 597 | else: |
| 592 | ema_embeddings = None | 598 | ema_embeddings = None |
| 593 | 599 | ||
| 594 | vae.requires_grad_(False) | ||
| 595 | unet.requires_grad_(False) | ||
| 596 | |||
| 597 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 598 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 599 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 600 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 601 | |||
| 602 | if args.scale_lr: | 600 | if args.scale_lr: |
| 603 | args.learning_rate = ( | 601 | args.learning_rate = ( |
| 604 | args.learning_rate * args.gradient_accumulation_steps * | 602 | args.learning_rate * args.gradient_accumulation_steps * |
| @@ -719,73 +717,36 @@ def main(): | |||
| 719 | seed=args.seed, | 717 | seed=args.seed, |
| 720 | ) | 718 | ) |
| 721 | 719 | ||
| 722 | def on_prepare(): | 720 | strategy = textual_inversion_strategy( |
| 723 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
| 724 | |||
| 725 | if args.gradient_checkpointing: | ||
| 726 | unet.train() | ||
| 727 | |||
| 728 | @contextmanager | ||
| 729 | def on_train(epoch: int): | ||
| 730 | try: | ||
| 731 | tokenizer.train() | ||
| 732 | yield | ||
| 733 | finally: | ||
| 734 | pass | ||
| 735 | |||
| 736 | @contextmanager | ||
| 737 | def on_eval(): | ||
| 738 | try: | ||
| 739 | tokenizer.eval() | ||
| 740 | |||
| 741 | ema_context = ema_embeddings.apply_temporary( | ||
| 742 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema else nullcontext() | ||
| 743 | |||
| 744 | with ema_context: | ||
| 745 | yield | ||
| 746 | finally: | ||
| 747 | pass | ||
| 748 | |||
| 749 | @torch.no_grad() | ||
| 750 | def on_after_optimize(lr: float): | ||
| 751 | if args.emb_decay_factor != 0: | ||
| 752 | text_encoder.text_model.embeddings.normalize( | ||
| 753 | args.emb_decay_target, | ||
| 754 | min(1.0, max(0.0, args.emb_decay_factor * ((lr - args.emb_decay_start) / (args.learning_rate - args.emb_decay_start)))) | ||
| 755 | ) | ||
| 756 | |||
| 757 | if args.use_ema: | ||
| 758 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 759 | |||
| 760 | def on_log(): | ||
| 761 | if args.use_ema: | ||
| 762 | return {"ema_decay": ema_embeddings.decay} | ||
| 763 | return {} | ||
| 764 | |||
| 765 | checkpointer = TextualInversionCheckpointer( | ||
| 766 | dtype=weight_dtype, | ||
| 767 | train_dataloader=train_dataloader, | ||
| 768 | val_dataloader=val_dataloader, | ||
| 769 | accelerator=accelerator, | 721 | accelerator=accelerator, |
| 770 | vae=vae, | ||
| 771 | unet=unet, | 722 | unet=unet, |
| 772 | tokenizer=tokenizer, | ||
| 773 | text_encoder=text_encoder, | 723 | text_encoder=text_encoder, |
| 774 | ema_embeddings=ema_embeddings, | 724 | tokenizer=tokenizer, |
| 725 | vae=vae, | ||
| 775 | sample_scheduler=sample_scheduler, | 726 | sample_scheduler=sample_scheduler, |
| 727 | train_dataloader=train_dataloader, | ||
| 728 | val_dataloader=val_dataloader, | ||
| 729 | dtype=weight_dtype, | ||
| 730 | output_dir=output_dir, | ||
| 731 | seed=args.seed, | ||
| 776 | placeholder_tokens=args.placeholder_tokens, | 732 | placeholder_tokens=args.placeholder_tokens, |
| 777 | placeholder_token_ids=placeholder_token_ids, | 733 | placeholder_token_ids=placeholder_token_ids, |
| 778 | output_dir=output_dir, | 734 | learning_rate=args.learning_rate, |
| 779 | sample_steps=args.sample_steps, | 735 | gradient_checkpointing=args.gradient_checkpointing, |
| 780 | sample_image_size=args.sample_image_size, | 736 | use_emb_decay=args.use_emb_decay, |
| 737 | emb_decay_target=args.emb_decay_target, | ||
| 738 | emb_decay_factor=args.emb_decay_factor, | ||
| 739 | emb_decay_start=args.emb_decay_start, | ||
| 740 | use_ema=args.use_ema, | ||
| 741 | ema_inv_gamma=args.ema_inv_gamma, | ||
| 742 | ema_power=args.ema_power, | ||
| 743 | ema_max_decay=args.ema_max_decay, | ||
| 781 | sample_batch_size=args.sample_batch_size, | 744 | sample_batch_size=args.sample_batch_size, |
| 782 | sample_batches=args.sample_batches, | 745 | sample_num_batches=args.sample_batches, |
| 783 | seed=args.seed | 746 | sample_num_steps=args.sample_steps, |
| 747 | sample_image_size=args.sample_image_size, | ||
| 784 | ) | 748 | ) |
| 785 | 749 | ||
| 786 | if accelerator.is_main_process: | ||
| 787 | accelerator.init_trackers("textual_inversion") | ||
| 788 | |||
| 789 | if args.find_lr: | 750 | if args.find_lr: |
| 790 | lr_finder = LRFinder( | 751 | lr_finder = LRFinder( |
| 791 | accelerator=accelerator, | 752 | accelerator=accelerator, |
| @@ -793,10 +754,7 @@ def main(): | |||
| 793 | model=text_encoder, | 754 | model=text_encoder, |
| 794 | train_dataloader=train_dataloader, | 755 | train_dataloader=train_dataloader, |
| 795 | val_dataloader=val_dataloader, | 756 | val_dataloader=val_dataloader, |
| 796 | loss_step=loss_step_, | 757 | **strategy, |
| 797 | on_train=on_train, | ||
| 798 | on_eval=on_eval, | ||
| 799 | on_after_optimize=on_after_optimize, | ||
| 800 | ) | 758 | ) |
| 801 | lr_finder.run(num_epochs=100, end_lr=1e3) | 759 | lr_finder.run(num_epochs=100, end_lr=1e3) |
| 802 | 760 | ||
| @@ -811,13 +769,7 @@ def main(): | |||
| 811 | checkpoint_frequency=args.checkpoint_frequency, | 769 | checkpoint_frequency=args.checkpoint_frequency, |
| 812 | global_step_offset=global_step_offset, | 770 | global_step_offset=global_step_offset, |
| 813 | prior_loss_weight=args.prior_loss_weight, | 771 | prior_loss_weight=args.prior_loss_weight, |
| 814 | on_prepare=on_prepare, | 772 | **strategy, |
| 815 | on_log=on_log, | ||
| 816 | on_train=on_train, | ||
| 817 | on_after_optimize=on_after_optimize, | ||
| 818 | on_eval=on_eval, | ||
| 819 | on_sample=checkpointer.save_samples, | ||
| 820 | on_checkpoint=checkpointer.checkpoint, | ||
| 821 | ) | 773 | ) |
| 822 | 774 | ||
| 823 | 775 | ||
