diff options
author | Volpeon <git@volpeon.ink> | 2023-01-13 22:25:30 +0100 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-01-13 22:25:30 +0100 |
commit | 3e7fbb7dce321435bbbb81361debfbc499bf9231 (patch) | |
tree | e7d5cefd2eda9755ab58861862f1978c13386f0d /training | |
parent | More modularization (diff) | |
download | textual-inversion-diff-3e7fbb7dce321435bbbb81361debfbc499bf9231.tar.gz textual-inversion-diff-3e7fbb7dce321435bbbb81361debfbc499bf9231.tar.bz2 textual-inversion-diff-3e7fbb7dce321435bbbb81361debfbc499bf9231.zip |
Reverted modularization mostly
Diffstat (limited to 'training')
-rw-r--r-- | training/common.py | 264 | ||||
-rw-r--r-- | training/modules/dreambooth.py | 0 | ||||
-rw-r--r-- | training/modules/lora.py | 0 | ||||
-rw-r--r-- | training/modules/ti.py | 284 | ||||
-rw-r--r-- | training/optimization.py | 53 |
5 files changed, 70 insertions, 531 deletions
diff --git a/training/common.py b/training/common.py index 73ce814..b6964a3 100644 --- a/training/common.py +++ b/training/common.py | |||
@@ -1,52 +1,24 @@ | |||
1 | import math | 1 | import math |
2 | from pathlib import Path | ||
3 | from contextlib import _GeneratorContextManager, nullcontext | 2 | from contextlib import _GeneratorContextManager, nullcontext |
4 | from typing import Callable, Any, Tuple, Union, Literal, Optional, NamedTuple | 3 | from typing import Callable, Any, Tuple, Union |
5 | import datetime | ||
6 | import logging | ||
7 | 4 | ||
8 | import torch | 5 | import torch |
9 | import torch.nn.functional as F | 6 | import torch.nn.functional as F |
10 | from torch.utils.data import DataLoader | 7 | from torch.utils.data import DataLoader |
11 | 8 | ||
12 | from accelerate import Accelerator | 9 | from accelerate import Accelerator |
13 | from accelerate.utils import LoggerType, set_seed | ||
14 | from transformers import CLIPTextModel | 10 | from transformers import CLIPTextModel |
15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | 11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler |
16 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | ||
17 | 12 | ||
18 | from tqdm.auto import tqdm | 13 | from tqdm.auto import tqdm |
19 | from slugify import slugify | ||
20 | 14 | ||
21 | from data.csv import VlpnDataModule, VlpnDataItem | ||
22 | from util import load_embeddings_from_dir | ||
23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
24 | from models.clip.embeddings import patch_managed_embeddings | 16 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings |
25 | from models.clip.util import get_extended_embeddings | 17 | from models.clip.util import get_extended_embeddings |
26 | from models.clip.tokenizer import MultiCLIPTokenizer | 18 | from models.clip.tokenizer import MultiCLIPTokenizer |
27 | from training.optimization import get_one_cycle_schedule | ||
28 | from training.util import AverageMeter, CheckpointerBase | 19 | from training.util import AverageMeter, CheckpointerBase |
29 | 20 | ||
30 | 21 | ||
31 | class TrainingSetup(NamedTuple): | ||
32 | accelerator: Accelerator | ||
33 | tokenizer: MultiCLIPTokenizer | ||
34 | text_encoder: CLIPTextModel | ||
35 | vae: AutoencoderKL | ||
36 | unet: UNet2DConditionModel | ||
37 | noise_scheduler: DDPMScheduler | ||
38 | checkpoint_scheduler: DPMSolverMultistepScheduler | ||
39 | optimizer_class: Callable | ||
40 | learning_rate: float | ||
41 | weight_dtype: torch.dtype | ||
42 | output_dir: Path | ||
43 | seed: int | ||
44 | train_dataloader: DataLoader | ||
45 | val_dataloader: DataLoader | ||
46 | placeholder_token: list[str] | ||
47 | placeholder_token_ids: list[list[int]] | ||
48 | |||
49 | |||
50 | def noop(*args, **kwards): | 22 | def noop(*args, **kwards): |
51 | pass | 23 | pass |
52 | 24 | ||
@@ -59,57 +31,6 @@ def noop_on_log(): | |||
59 | return {} | 31 | return {} |
60 | 32 | ||
61 | 33 | ||
62 | def get_scheduler( | ||
63 | id: str, | ||
64 | optimizer: torch.optim.Optimizer, | ||
65 | num_training_steps_per_epoch: int, | ||
66 | gradient_accumulation_steps: int, | ||
67 | min_lr: float = 0.04, | ||
68 | warmup_func: str = "cos", | ||
69 | annealing_func: str = "cos", | ||
70 | warmup_exp: int = 1, | ||
71 | annealing_exp: int = 1, | ||
72 | cycles: int = 1, | ||
73 | train_epochs: int = 100, | ||
74 | warmup_epochs: int = 10, | ||
75 | ): | ||
76 | num_training_steps_per_epoch = math.ceil( | ||
77 | num_training_steps_per_epoch / gradient_accumulation_steps | ||
78 | ) * gradient_accumulation_steps | ||
79 | num_training_steps = train_epochs * num_training_steps_per_epoch | ||
80 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | ||
81 | |||
82 | if id == "one_cycle": | ||
83 | lr_scheduler = get_one_cycle_schedule( | ||
84 | optimizer=optimizer, | ||
85 | num_training_steps=num_training_steps, | ||
86 | warmup=warmup_func, | ||
87 | annealing=annealing_func, | ||
88 | warmup_exp=warmup_exp, | ||
89 | annealing_exp=annealing_exp, | ||
90 | min_lr=min_lr, | ||
91 | ) | ||
92 | elif id == "cosine_with_restarts": | ||
93 | if cycles is None: | ||
94 | cycles = math.ceil(math.sqrt(((num_training_steps - num_warmup_steps) / num_training_steps_per_epoch))) | ||
95 | |||
96 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
97 | optimizer=optimizer, | ||
98 | num_warmup_steps=num_warmup_steps, | ||
99 | num_training_steps=num_training_steps, | ||
100 | num_cycles=cycles, | ||
101 | ) | ||
102 | else: | ||
103 | lr_scheduler = get_scheduler_( | ||
104 | id, | ||
105 | optimizer=optimizer, | ||
106 | num_warmup_steps=num_warmup_steps, | ||
107 | num_training_steps=num_training_steps, | ||
108 | ) | ||
109 | |||
110 | return lr_scheduler | ||
111 | |||
112 | |||
113 | def generate_class_images( | 34 | def generate_class_images( |
114 | accelerator, | 35 | accelerator, |
115 | text_encoder, | 36 | text_encoder, |
@@ -162,194 +83,43 @@ def generate_class_images( | |||
162 | torch.cuda.empty_cache() | 83 | torch.cuda.empty_cache() |
163 | 84 | ||
164 | 85 | ||
165 | def train_setup( | 86 | def get_models(pretrained_model_name_or_path: str): |
166 | output_dir: str, | ||
167 | project: str, | ||
168 | pretrained_model_name_or_path: str, | ||
169 | learning_rate: float, | ||
170 | data_file: str, | ||
171 | gradient_accumulation_steps: int = 1, | ||
172 | mixed_precision: Literal["no", "fp16", "bf16"] = "no", | ||
173 | seed: Optional[int] = None, | ||
174 | vector_shuffle: Union[bool, Literal["all", "trailing", "leading", "between", "off"]] = "auto", | ||
175 | vector_dropout: float = 0.1, | ||
176 | gradient_checkpointing: bool = True, | ||
177 | embeddings_dir: Optional[str] = None, | ||
178 | placeholder_token: list[str] = [], | ||
179 | initializer_token: list[str] = [], | ||
180 | num_vectors: int = 1, | ||
181 | scale_lr: bool = False, | ||
182 | use_8bit_adam: bool = False, | ||
183 | train_batch_size: int = 1, | ||
184 | class_image_dir: Optional[str] = None, | ||
185 | num_class_images: int = 0, | ||
186 | resolution: int = 768, | ||
187 | num_buckets: int = 0, | ||
188 | progressive_buckets: bool = False, | ||
189 | bucket_step_size: int = 64, | ||
190 | bucket_max_pixels: Optional[int] = None, | ||
191 | tag_dropout: float = 0.1, | ||
192 | tag_shuffle: bool = True, | ||
193 | data_template: str = "template", | ||
194 | valid_set_size: Optional[int] = None, | ||
195 | valid_set_repeat: int = 1, | ||
196 | data_filter: Optional[Callable[[VlpnDataItem], bool]] = None, | ||
197 | sample_batch_size: int = 1, | ||
198 | sample_image_size: int = 768, | ||
199 | sample_steps: int = 20, | ||
200 | ) -> TrainingSetup: | ||
201 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
202 | output_dir = Path(output_dir).joinpath(slugify(project), now) | ||
203 | output_dir.mkdir(parents=True, exist_ok=True) | ||
204 | |||
205 | accelerator = Accelerator( | ||
206 | log_with=LoggerType.TENSORBOARD, | ||
207 | logging_dir=f"{output_dir}", | ||
208 | gradient_accumulation_steps=gradient_accumulation_steps, | ||
209 | mixed_precision=mixed_precision | ||
210 | ) | ||
211 | |||
212 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
213 | |||
214 | seed = seed or (torch.random.seed() >> 32) | ||
215 | set_seed(seed) | ||
216 | |||
217 | # Load the tokenizer and add the placeholder token as a additional special token | ||
218 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | 87 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') |
219 | tokenizer.set_use_vector_shuffle(vector_shuffle) | ||
220 | tokenizer.set_dropout(vector_dropout) | ||
221 | |||
222 | # Load models and create wrapper for stable diffusion | ||
223 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | 88 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') |
224 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | 89 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') |
225 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | 90 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') |
226 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | 91 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') |
227 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | 92 | sample_scheduler = DPMSolverMultistepScheduler.from_pretrained( |
228 | pretrained_model_name_or_path, subfolder='scheduler') | 93 | pretrained_model_name_or_path, subfolder='scheduler') |
229 | 94 | ||
230 | vae.enable_slicing() | 95 | vae.enable_slicing() |
231 | vae.set_use_memory_efficient_attention_xformers(True) | 96 | vae.set_use_memory_efficient_attention_xformers(True) |
232 | unet.set_use_memory_efficient_attention_xformers(True) | 97 | unet.set_use_memory_efficient_attention_xformers(True) |
233 | 98 | ||
234 | if gradient_checkpointing: | ||
235 | unet.enable_gradient_checkpointing() | ||
236 | text_encoder.gradient_checkpointing_enable() | ||
237 | |||
238 | embeddings = patch_managed_embeddings(text_encoder) | 99 | embeddings = patch_managed_embeddings(text_encoder) |
239 | 100 | ||
240 | if embeddings_dir is not None: | 101 | return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings |
241 | embeddings_dir = Path(embeddings_dir) | ||
242 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
243 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
244 | 102 | ||
245 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
246 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
247 | 103 | ||
248 | # Convert the initializer_token, placeholder_token to ids | 104 | def add_placeholder_tokens( |
105 | tokenizer: MultiCLIPTokenizer, | ||
106 | embeddings: ManagedCLIPTextEmbeddings, | ||
107 | placeholder_tokens: list[str], | ||
108 | initializer_tokens: list[str], | ||
109 | num_vectors: Union[list[int], int] | ||
110 | ): | ||
249 | initializer_token_ids = [ | 111 | initializer_token_ids = [ |
250 | tokenizer.encode(token, add_special_tokens=False) | 112 | tokenizer.encode(token, add_special_tokens=False) |
251 | for token in initializer_token | 113 | for token in initializer_tokens |
252 | ] | 114 | ] |
115 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors) | ||
253 | 116 | ||
254 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_token, num_vectors) | ||
255 | embeddings.resize(len(tokenizer)) | 117 | embeddings.resize(len(tokenizer)) |
256 | 118 | ||
257 | for (new_id, init_ids) in zip(placeholder_token_ids, initializer_token_ids): | 119 | for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids): |
258 | embeddings.add_embed(new_id, init_ids) | 120 | embeddings.add_embed(placeholder_token_id, initializer_token_id) |
259 | |||
260 | init_ratios = [ | ||
261 | f"{len(init_ids)} / {len(new_id)}" | ||
262 | for new_id, init_ids in zip(placeholder_token_ids, initializer_token_ids) | ||
263 | ] | ||
264 | |||
265 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(placeholder_token, placeholder_token_ids, init_ratios))}") | ||
266 | 121 | ||
267 | vae.requires_grad_(False) | 122 | return placeholder_token_ids |
268 | unet.requires_grad_(False) | ||
269 | text_encoder.requires_grad_(False) | ||
270 | |||
271 | if scale_lr: | ||
272 | learning_rate = ( | ||
273 | learning_rate * gradient_accumulation_steps * | ||
274 | train_batch_size * accelerator.num_processes | ||
275 | ) | ||
276 | |||
277 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
278 | if use_8bit_adam: | ||
279 | try: | ||
280 | import bitsandbytes as bnb | ||
281 | except ImportError: | ||
282 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
283 | |||
284 | optimizer_class = bnb.optim.AdamW8bit | ||
285 | else: | ||
286 | optimizer_class = torch.optim.AdamW | ||
287 | |||
288 | weight_dtype = torch.float32 | ||
289 | if mixed_precision == "fp16": | ||
290 | weight_dtype = torch.float16 | ||
291 | elif mixed_precision == "bf16": | ||
292 | weight_dtype = torch.bfloat16 | ||
293 | |||
294 | datamodule = VlpnDataModule( | ||
295 | data_file=data_file, | ||
296 | batch_size=train_batch_size, | ||
297 | tokenizer=tokenizer, | ||
298 | class_subdir=class_image_dir, | ||
299 | num_class_images=num_class_images, | ||
300 | size=resolution, | ||
301 | num_buckets=num_buckets, | ||
302 | progressive_buckets=progressive_buckets, | ||
303 | bucket_step_size=bucket_step_size, | ||
304 | bucket_max_pixels=bucket_max_pixels, | ||
305 | dropout=tag_dropout, | ||
306 | shuffle=tag_shuffle, | ||
307 | template_key=data_template, | ||
308 | valid_set_size=valid_set_size, | ||
309 | valid_set_repeat=valid_set_repeat, | ||
310 | seed=seed, | ||
311 | filter=data_filter, | ||
312 | dtype=weight_dtype | ||
313 | ) | ||
314 | datamodule.setup() | ||
315 | |||
316 | train_dataloader = datamodule.train_dataloader | ||
317 | val_dataloader = datamodule.val_dataloader | ||
318 | |||
319 | train_dataloader, val_dataloader = accelerator.prepare(train_dataloader, val_dataloader) | ||
320 | |||
321 | if num_class_images != 0: | ||
322 | generate_class_images( | ||
323 | accelerator, | ||
324 | text_encoder, | ||
325 | vae, | ||
326 | unet, | ||
327 | tokenizer, | ||
328 | checkpoint_scheduler, | ||
329 | datamodule.data_train, | ||
330 | sample_batch_size, | ||
331 | sample_image_size, | ||
332 | sample_steps | ||
333 | ) | ||
334 | |||
335 | return TrainingSetup( | ||
336 | accelerator=accelerator, | ||
337 | tokenizer=tokenizer, | ||
338 | text_encoder=text_encoder, | ||
339 | vae=vae, | ||
340 | unet=unet, | ||
341 | noise_scheduler=noise_scheduler, | ||
342 | checkpoint_scheduler=checkpoint_scheduler, | ||
343 | optimizer_class=optimizer_class, | ||
344 | learning_rate=learning_rate, | ||
345 | output_dir=output_dir, | ||
346 | weight_dtype=weight_dtype, | ||
347 | seed=seed, | ||
348 | train_dataloader=train_dataloader, | ||
349 | val_dataloader=val_dataloader, | ||
350 | placeholder_token=placeholder_token, | ||
351 | placeholder_token_ids=placeholder_token_ids | ||
352 | ) | ||
353 | 123 | ||
354 | 124 | ||
355 | def loss_step( | 125 | def loss_step( |
diff --git a/training/modules/dreambooth.py b/training/modules/dreambooth.py deleted file mode 100644 index e69de29..0000000 --- a/training/modules/dreambooth.py +++ /dev/null | |||
diff --git a/training/modules/lora.py b/training/modules/lora.py deleted file mode 100644 index e69de29..0000000 --- a/training/modules/lora.py +++ /dev/null | |||
diff --git a/training/modules/ti.py b/training/modules/ti.py deleted file mode 100644 index 2db6f88..0000000 --- a/training/modules/ti.py +++ /dev/null | |||
@@ -1,284 +0,0 @@ | |||
1 | from typing import Literal | ||
2 | from functools import partial | ||
3 | from contextlib import contextmanager, nullcontext | ||
4 | |||
5 | import torch | ||
6 | |||
7 | from slugify import slugify | ||
8 | |||
9 | from accelerate import Accelerator | ||
10 | from transformers import CLIPTextModel | ||
11 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
12 | |||
13 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
14 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
15 | |||
16 | from training.common import TrainingSetup, get_scheduler, train_loop, loss_step | ||
17 | from training.util import EMAModel, CheckpointerBase | ||
18 | |||
19 | |||
20 | class Checkpointer(CheckpointerBase): | ||
21 | def __init__( | ||
22 | self, | ||
23 | accelerator: Accelerator, | ||
24 | vae: AutoencoderKL, | ||
25 | unet: UNet2DConditionModel, | ||
26 | tokenizer: MultiCLIPTokenizer, | ||
27 | text_encoder: CLIPTextModel, | ||
28 | ema_embeddings: EMAModel, | ||
29 | weight_dtype: torch.dtype, | ||
30 | scheduler, | ||
31 | placeholder_token, | ||
32 | placeholder_token_ids, | ||
33 | *args, | ||
34 | **kwargs | ||
35 | ): | ||
36 | super().__init__(*args, **kwargs) | ||
37 | |||
38 | self.weight_dtype = weight_dtype | ||
39 | self.accelerator = accelerator | ||
40 | self.vae = vae | ||
41 | self.unet = unet | ||
42 | self.tokenizer = tokenizer | ||
43 | self.text_encoder = text_encoder | ||
44 | self.ema_embeddings = ema_embeddings | ||
45 | self.scheduler = scheduler | ||
46 | self.placeholder_token = placeholder_token | ||
47 | self.placeholder_token_ids = placeholder_token_ids | ||
48 | |||
49 | @torch.no_grad() | ||
50 | def checkpoint(self, step, postfix): | ||
51 | print("Saving checkpoint for step %d..." % step) | ||
52 | |||
53 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
54 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
55 | |||
56 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
57 | |||
58 | ema_context = nullcontext() | ||
59 | if self.ema_embeddings is not None: | ||
60 | ema_context = self.ema_embeddings.apply_temporary( | ||
61 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
62 | |||
63 | with ema_context: | ||
64 | for (token, ids) in zip(self.placeholder_token, self.placeholder_token_ids): | ||
65 | text_encoder.text_model.embeddings.save_embed( | ||
66 | ids, | ||
67 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
68 | ) | ||
69 | |||
70 | del text_encoder | ||
71 | |||
72 | @torch.no_grad() | ||
73 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
74 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
75 | |||
76 | ema_context = nullcontext() | ||
77 | if self.ema_embeddings is not None: | ||
78 | ema_context = self.ema_embeddings.apply_temporary( | ||
79 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
80 | |||
81 | with ema_context: | ||
82 | orig_dtype = text_encoder.dtype | ||
83 | text_encoder.to(dtype=self.weight_dtype) | ||
84 | |||
85 | pipeline = VlpnStableDiffusion( | ||
86 | text_encoder=text_encoder, | ||
87 | vae=self.vae, | ||
88 | unet=self.unet, | ||
89 | tokenizer=self.tokenizer, | ||
90 | scheduler=self.scheduler, | ||
91 | ).to(self.accelerator.device) | ||
92 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
93 | |||
94 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
95 | |||
96 | text_encoder.to(dtype=orig_dtype) | ||
97 | |||
98 | del text_encoder | ||
99 | del pipeline | ||
100 | |||
101 | if torch.cuda.is_available(): | ||
102 | torch.cuda.empty_cache() | ||
103 | |||
104 | |||
105 | def train_ti( | ||
106 | setup: TrainingSetup, | ||
107 | num_train_epochs: int = 100, | ||
108 | num_class_images: int = 0, | ||
109 | prior_loss_weight: float = 1.0, | ||
110 | use_ema: bool = False, | ||
111 | ema_inv_gamma: float = 1.0, | ||
112 | ema_power: float = 4/5, | ||
113 | ema_max_decay: float = .9999, | ||
114 | adam_beta1: float = 0.9, | ||
115 | adam_beta2: float = 0.999, | ||
116 | adam_weight_decay: float = 0, | ||
117 | adam_epsilon: float = 1e-08, | ||
118 | adam_amsgrad: bool = False, | ||
119 | lr_scheduler: Literal[ | ||
120 | "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle" | ||
121 | ] = "one_cycle", | ||
122 | lr_min_lr: float = 0.04, | ||
123 | lr_warmup_func: Literal["linear", "cos"] = "cos", | ||
124 | lr_annealing_func: Literal["linear", "half_cos", "cos"] = "cos", | ||
125 | lr_warmup_exp: int = 1, | ||
126 | lr_annealing_exp: int = 1, | ||
127 | lr_cycles: int = 1, | ||
128 | lr_warmup_epochs: int = 10, | ||
129 | emb_decay_target: float = 0.4, | ||
130 | emb_decay_factor: float = 1, | ||
131 | emb_decay_start: float = 1e-4, | ||
132 | sample_image_size: int = 768, | ||
133 | sample_batch_size: int = 1, | ||
134 | sample_batches: int = 1, | ||
135 | sample_frequency: int = 10, | ||
136 | sample_steps: int = 20, | ||
137 | checkpoint_frequency: int = 50, | ||
138 | global_step_offset: int = 0, | ||
139 | ): | ||
140 | if use_ema: | ||
141 | ema_embeddings = EMAModel( | ||
142 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
143 | inv_gamma=ema_inv_gamma, | ||
144 | power=ema_power, | ||
145 | max_value=ema_max_decay, | ||
146 | ) | ||
147 | else: | ||
148 | ema_embeddings = None | ||
149 | |||
150 | setup.text_encoder.requires_grad_(True) | ||
151 | setup.text_encoder.text_model.encoder.requires_grad_(False) | ||
152 | setup.text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
153 | setup.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
154 | setup.text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
155 | |||
156 | # Initialize the optimizer | ||
157 | optimizer = setup.optimizer_class( | ||
158 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
159 | lr=setup.learning_rate, | ||
160 | betas=(adam_beta1, adam_beta2), | ||
161 | weight_decay=adam_weight_decay, | ||
162 | eps=adam_epsilon, | ||
163 | amsgrad=adam_amsgrad, | ||
164 | ) | ||
165 | |||
166 | lr_scheduler = get_scheduler( | ||
167 | lr_scheduler, | ||
168 | optimizer=optimizer, | ||
169 | min_lr=lr_min_lr, | ||
170 | warmup_func=lr_warmup_func, | ||
171 | annealing_func=lr_annealing_func, | ||
172 | warmup_exp=lr_warmup_exp, | ||
173 | annealing_exp=lr_annealing_exp, | ||
174 | cycles=lr_cycles, | ||
175 | train_epochs=num_train_epochs, | ||
176 | warmup_epochs=lr_warmup_epochs, | ||
177 | num_training_steps_per_epoch=len(setup.train_dataloader), | ||
178 | gradient_accumulation_steps=setup.accelerator.gradient_accumulation_steps | ||
179 | ) | ||
180 | |||
181 | text_encoder, optimizer, lr_scheduler = setup.accelerator.prepare( | ||
182 | setup.text_encoder, optimizer, lr_scheduler | ||
183 | ) | ||
184 | |||
185 | # Move vae and unet to device | ||
186 | setup.vae.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
187 | setup.unet.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
188 | |||
189 | if use_ema: | ||
190 | ema_embeddings.to(setup.accelerator.device) | ||
191 | |||
192 | setup.unet.train() | ||
193 | |||
194 | @contextmanager | ||
195 | def on_train(epoch: int): | ||
196 | try: | ||
197 | setup.tokenizer.train() | ||
198 | yield | ||
199 | finally: | ||
200 | pass | ||
201 | |||
202 | @contextmanager | ||
203 | def on_eval(): | ||
204 | try: | ||
205 | setup.tokenizer.eval() | ||
206 | |||
207 | ema_context = nullcontext() | ||
208 | if use_ema: | ||
209 | ema_context = ema_embeddings.apply_temporary( | ||
210 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
211 | |||
212 | with ema_context: | ||
213 | yield | ||
214 | finally: | ||
215 | pass | ||
216 | |||
217 | @torch.no_grad() | ||
218 | def on_after_optimize(lr: float): | ||
219 | text_encoder.text_model.embeddings.normalize( | ||
220 | emb_decay_target, | ||
221 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (setup.learning_rate - emb_decay_start)))) | ||
222 | ) | ||
223 | |||
224 | if use_ema: | ||
225 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
226 | |||
227 | def on_log(): | ||
228 | if use_ema: | ||
229 | return {"ema_decay": ema_embeddings.decay} | ||
230 | return {} | ||
231 | |||
232 | loss_step_ = partial( | ||
233 | loss_step, | ||
234 | setup.vae, | ||
235 | setup.noise_scheduler, | ||
236 | setup.unet, | ||
237 | text_encoder, | ||
238 | num_class_images != 0, | ||
239 | prior_loss_weight, | ||
240 | setup.seed, | ||
241 | ) | ||
242 | |||
243 | checkpointer = Checkpointer( | ||
244 | accelerator=setup.accelerator, | ||
245 | vae=setup.vae, | ||
246 | unet=setup.unet, | ||
247 | tokenizer=setup.tokenizer, | ||
248 | text_encoder=text_encoder, | ||
249 | ema_embeddings=ema_embeddings, | ||
250 | weight_dtype=setup.weight_dtype, | ||
251 | scheduler=setup.checkpoint_scheduler, | ||
252 | placeholder_token=setup.placeholder_token, | ||
253 | placeholder_token_ids=setup.placeholder_token_ids, | ||
254 | train_dataloader=setup.train_dataloader, | ||
255 | val_dataloader=setup.val_dataloader, | ||
256 | output_dir=setup.output_dir, | ||
257 | seed=setup.seed, | ||
258 | sample_image_size=sample_image_size, | ||
259 | sample_batch_size=sample_batch_size, | ||
260 | sample_batches=sample_batches | ||
261 | ) | ||
262 | |||
263 | if setup.accelerator.is_main_process: | ||
264 | setup.accelerator.init_trackers("textual_inversion") | ||
265 | |||
266 | train_loop( | ||
267 | accelerator=setup.accelerator, | ||
268 | optimizer=optimizer, | ||
269 | lr_scheduler=lr_scheduler, | ||
270 | model=text_encoder, | ||
271 | checkpointer=checkpointer, | ||
272 | train_dataloader=setup.train_dataloader, | ||
273 | val_dataloader=setup.val_dataloader, | ||
274 | loss_step=loss_step_, | ||
275 | sample_frequency=sample_frequency, | ||
276 | sample_steps=sample_steps, | ||
277 | checkpoint_frequency=checkpoint_frequency, | ||
278 | global_step_offset=global_step_offset, | ||
279 | num_epochs=num_train_epochs, | ||
280 | on_log=on_log, | ||
281 | on_train=on_train, | ||
282 | on_after_optimize=on_after_optimize, | ||
283 | on_eval=on_eval | ||
284 | ) | ||
diff --git a/training/optimization.py b/training/optimization.py index dd84f9c..5db7794 100644 --- a/training/optimization.py +++ b/training/optimization.py | |||
@@ -5,6 +5,8 @@ from functools import partial | |||
5 | import torch | 5 | import torch |
6 | from torch.optim.lr_scheduler import LambdaLR | 6 | from torch.optim.lr_scheduler import LambdaLR |
7 | 7 | ||
8 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | ||
9 | |||
8 | 10 | ||
9 | class OneCyclePhase(NamedTuple): | 11 | class OneCyclePhase(NamedTuple): |
10 | step_min: int | 12 | step_min: int |
@@ -83,3 +85,54 @@ def get_one_cycle_schedule( | |||
83 | return phase.min + phase.func((current_step - phase.step_min) / (phase.step_max - phase.step_min)) * (phase.max - phase.min) | 85 | return phase.min + phase.func((current_step - phase.step_min) / (phase.step_max - phase.step_min)) * (phase.max - phase.min) |
84 | 86 | ||
85 | return LambdaLR(optimizer, lr_lambda, last_epoch) | 87 | return LambdaLR(optimizer, lr_lambda, last_epoch) |
88 | |||
89 | |||
90 | def get_scheduler( | ||
91 | id: str, | ||
92 | optimizer: torch.optim.Optimizer, | ||
93 | num_training_steps_per_epoch: int, | ||
94 | gradient_accumulation_steps: int, | ||
95 | min_lr: float = 0.04, | ||
96 | warmup_func: str = "cos", | ||
97 | annealing_func: str = "cos", | ||
98 | warmup_exp: int = 1, | ||
99 | annealing_exp: int = 1, | ||
100 | cycles: int = 1, | ||
101 | train_epochs: int = 100, | ||
102 | warmup_epochs: int = 10, | ||
103 | ): | ||
104 | num_training_steps_per_epoch = math.ceil( | ||
105 | num_training_steps_per_epoch / gradient_accumulation_steps | ||
106 | ) * gradient_accumulation_steps | ||
107 | num_training_steps = train_epochs * num_training_steps_per_epoch | ||
108 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | ||
109 | |||
110 | if id == "one_cycle": | ||
111 | lr_scheduler = get_one_cycle_schedule( | ||
112 | optimizer=optimizer, | ||
113 | num_training_steps=num_training_steps, | ||
114 | warmup=warmup_func, | ||
115 | annealing=annealing_func, | ||
116 | warmup_exp=warmup_exp, | ||
117 | annealing_exp=annealing_exp, | ||
118 | min_lr=min_lr, | ||
119 | ) | ||
120 | elif id == "cosine_with_restarts": | ||
121 | if cycles is None: | ||
122 | cycles = math.ceil(math.sqrt(((num_training_steps - num_warmup_steps) / num_training_steps_per_epoch))) | ||
123 | |||
124 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
125 | optimizer=optimizer, | ||
126 | num_warmup_steps=num_warmup_steps, | ||
127 | num_training_steps=num_training_steps, | ||
128 | num_cycles=cycles, | ||
129 | ) | ||
130 | else: | ||
131 | lr_scheduler = get_scheduler_( | ||
132 | id, | ||
133 | optimizer=optimizer, | ||
134 | num_warmup_steps=num_warmup_steps, | ||
135 | num_training_steps=num_training_steps, | ||
136 | ) | ||
137 | |||
138 | return lr_scheduler | ||