diff options
Diffstat (limited to 'training/strategy/dreambooth.py')
| -rw-r--r-- | training/strategy/dreambooth.py | 17 |
1 files changed, 7 insertions, 10 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 28fccff..9808027 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
| @@ -74,6 +74,7 @@ def dreambooth_strategy_callbacks( | |||
| 74 | power=ema_power, | 74 | power=ema_power, |
| 75 | max_value=ema_max_decay, | 75 | max_value=ema_max_decay, |
| 76 | ) | 76 | ) |
| 77 | ema_unet.to(accelerator.device) | ||
| 77 | else: | 78 | else: |
| 78 | ema_unet = None | 79 | ema_unet = None |
| 79 | 80 | ||
| @@ -86,14 +87,6 @@ def dreambooth_strategy_callbacks( | |||
| 86 | def on_accum_model(): | 87 | def on_accum_model(): |
| 87 | return unet | 88 | return unet |
| 88 | 89 | ||
| 89 | def on_prepare(): | ||
| 90 | unet.requires_grad_(True) | ||
| 91 | text_encoder.text_model.encoder.requires_grad_(True) | ||
| 92 | text_encoder.text_model.final_layer_norm.requires_grad_(True) | ||
| 93 | |||
| 94 | if ema_unet is not None: | ||
| 95 | ema_unet.to(accelerator.device) | ||
| 96 | |||
| 97 | @contextmanager | 90 | @contextmanager |
| 98 | def on_train(epoch: int): | 91 | def on_train(epoch: int): |
| 99 | tokenizer.train() | 92 | tokenizer.train() |
| @@ -181,7 +174,6 @@ def dreambooth_strategy_callbacks( | |||
| 181 | torch.cuda.empty_cache() | 174 | torch.cuda.empty_cache() |
| 182 | 175 | ||
| 183 | return TrainingCallbacks( | 176 | return TrainingCallbacks( |
| 184 | on_prepare=on_prepare, | ||
| 185 | on_accum_model=on_accum_model, | 177 | on_accum_model=on_accum_model, |
| 186 | on_train=on_train, | 178 | on_train=on_train, |
| 187 | on_eval=on_eval, | 179 | on_eval=on_eval, |
| @@ -203,7 +195,12 @@ def dreambooth_prepare( | |||
| 203 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 195 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 204 | **kwargs | 196 | **kwargs |
| 205 | ): | 197 | ): |
| 206 | return accelerator.prepare(text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) + ({},) | 198 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 199 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 200 | |||
| 201 | text_encoder.text_model.embeddings.requires_grad_(False) | ||
| 202 | |||
| 203 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} | ||
| 207 | 204 | ||
| 208 | 205 | ||
| 209 | dreambooth_strategy = TrainingStrategy( | 206 | dreambooth_strategy = TrainingStrategy( |
