diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/functional.py | 9 | ||||
| -rw-r--r-- | training/strategy/dreambooth.py | 17 | ||||
| -rw-r--r-- | training/strategy/lora.py | 49 | ||||
| -rw-r--r-- | training/strategy/ti.py | 22 |
4 files changed, 32 insertions, 65 deletions
diff --git a/training/functional.py b/training/functional.py index a5b339d..ee73ab2 100644 --- a/training/functional.py +++ b/training/functional.py | |||
| @@ -34,7 +34,6 @@ def const(result=None): | |||
| 34 | 34 | ||
| 35 | @dataclass | 35 | @dataclass |
| 36 | class TrainingCallbacks(): | 36 | class TrainingCallbacks(): |
| 37 | on_prepare: Callable[[], None] = const() | ||
| 38 | on_accum_model: Callable[[], torch.nn.Module] = const(None) | 37 | on_accum_model: Callable[[], torch.nn.Module] = const(None) |
| 39 | on_log: Callable[[], dict[str, Any]] = const({}) | 38 | on_log: Callable[[], dict[str, Any]] = const({}) |
| 40 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) | 39 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) |
| @@ -620,10 +619,8 @@ def train( | |||
| 620 | kwargs.update(extra) | 619 | kwargs.update(extra) |
| 621 | 620 | ||
| 622 | vae.to(accelerator.device, dtype=dtype) | 621 | vae.to(accelerator.device, dtype=dtype) |
| 623 | 622 | vae.requires_grad_(False) | |
| 624 | for model in (unet, text_encoder, vae): | 623 | vae.eval() |
| 625 | model.requires_grad_(False) | ||
| 626 | model.eval() | ||
| 627 | 624 | ||
| 628 | callbacks = strategy.callbacks( | 625 | callbacks = strategy.callbacks( |
| 629 | accelerator=accelerator, | 626 | accelerator=accelerator, |
| @@ -636,8 +633,6 @@ def train( | |||
| 636 | **kwargs, | 633 | **kwargs, |
| 637 | ) | 634 | ) |
| 638 | 635 | ||
| 639 | callbacks.on_prepare() | ||
| 640 | |||
| 641 | loss_step_ = partial( | 636 | loss_step_ = partial( |
| 642 | loss_step, | 637 | loss_step, |
| 643 | vae, | 638 | vae, |
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 28fccff..9808027 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
| @@ -74,6 +74,7 @@ def dreambooth_strategy_callbacks( | |||
| 74 | power=ema_power, | 74 | power=ema_power, |
| 75 | max_value=ema_max_decay, | 75 | max_value=ema_max_decay, |
| 76 | ) | 76 | ) |
| 77 | ema_unet.to(accelerator.device) | ||
| 77 | else: | 78 | else: |
| 78 | ema_unet = None | 79 | ema_unet = None |
| 79 | 80 | ||
| @@ -86,14 +87,6 @@ def dreambooth_strategy_callbacks( | |||
| 86 | def on_accum_model(): | 87 | def on_accum_model(): |
| 87 | return unet | 88 | return unet |
| 88 | 89 | ||
| 89 | def on_prepare(): | ||
| 90 | unet.requires_grad_(True) | ||
| 91 | text_encoder.text_model.encoder.requires_grad_(True) | ||
| 92 | text_encoder.text_model.final_layer_norm.requires_grad_(True) | ||
| 93 | |||
| 94 | if ema_unet is not None: | ||
| 95 | ema_unet.to(accelerator.device) | ||
| 96 | |||
| 97 | @contextmanager | 90 | @contextmanager |
| 98 | def on_train(epoch: int): | 91 | def on_train(epoch: int): |
| 99 | tokenizer.train() | 92 | tokenizer.train() |
| @@ -181,7 +174,6 @@ def dreambooth_strategy_callbacks( | |||
| 181 | torch.cuda.empty_cache() | 174 | torch.cuda.empty_cache() |
| 182 | 175 | ||
| 183 | return TrainingCallbacks( | 176 | return TrainingCallbacks( |
| 184 | on_prepare=on_prepare, | ||
| 185 | on_accum_model=on_accum_model, | 177 | on_accum_model=on_accum_model, |
| 186 | on_train=on_train, | 178 | on_train=on_train, |
| 187 | on_eval=on_eval, | 179 | on_eval=on_eval, |
| @@ -203,7 +195,12 @@ def dreambooth_prepare( | |||
| 203 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 195 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 204 | **kwargs | 196 | **kwargs |
| 205 | ): | 197 | ): |
| 206 | return accelerator.prepare(text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) + ({},) | 198 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 199 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 200 | |||
| 201 | text_encoder.text_model.embeddings.requires_grad_(False) | ||
| 202 | |||
| 203 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} | ||
| 207 | 204 | ||
| 208 | 205 | ||
| 209 | dreambooth_strategy = TrainingStrategy( | 206 | dreambooth_strategy = TrainingStrategy( |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 1c8fad6..3971eae 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
| @@ -10,18 +10,12 @@ from torch.utils.data import DataLoader | |||
| 10 | from accelerate import Accelerator | 10 | from accelerate import Accelerator |
| 11 | from transformers import CLIPTextModel | 11 | from transformers import CLIPTextModel |
| 12 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | 12 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler |
| 13 | from peft import LoraConfig, LoraModel, get_peft_model_state_dict | 13 | from peft import get_peft_model_state_dict |
| 14 | from peft.tuners.lora import mark_only_lora_as_trainable | ||
| 15 | 14 | ||
| 16 | from models.clip.tokenizer import MultiCLIPTokenizer | 15 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 17 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples | 16 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
| 18 | 17 | ||
| 19 | 18 | ||
| 20 | # https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py | ||
| 21 | UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] | ||
| 22 | TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] | ||
| 23 | |||
| 24 | |||
| 25 | def lora_strategy_callbacks( | 19 | def lora_strategy_callbacks( |
| 26 | accelerator: Accelerator, | 20 | accelerator: Accelerator, |
| 27 | unet: UNet2DConditionModel, | 21 | unet: UNet2DConditionModel, |
| @@ -61,10 +55,6 @@ def lora_strategy_callbacks( | |||
| 61 | image_size=sample_image_size, | 55 | image_size=sample_image_size, |
| 62 | ) | 56 | ) |
| 63 | 57 | ||
| 64 | def on_prepare(): | ||
| 65 | mark_only_lora_as_trainable(unet.model, unet.peft_config.bias) | ||
| 66 | mark_only_lora_as_trainable(text_encoder.model, text_encoder.peft_config.bias) | ||
| 67 | |||
| 68 | def on_accum_model(): | 58 | def on_accum_model(): |
| 69 | return unet | 59 | return unet |
| 70 | 60 | ||
| @@ -93,15 +83,15 @@ def lora_strategy_callbacks( | |||
| 93 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) | 83 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) |
| 94 | 84 | ||
| 95 | lora_config = {} | 85 | lora_config = {} |
| 96 | state_dict = get_peft_model_state_dict(unet, state_dict=accelerator.get_state_dict(unet)) | 86 | state_dict = get_peft_model_state_dict(unet_, state_dict=accelerator.get_state_dict(unet_)) |
| 97 | lora_config["peft_config"] = unet.get_peft_config_as_dict(inference=True) | 87 | lora_config["peft_config"] = unet_.get_peft_config_as_dict(inference=True) |
| 98 | 88 | ||
| 99 | text_encoder_state_dict = get_peft_model_state_dict( | 89 | text_encoder_state_dict = get_peft_model_state_dict( |
| 100 | text_encoder, state_dict=accelerator.get_state_dict(text_encoder) | 90 | text_encoder_, state_dict=accelerator.get_state_dict(text_encoder_) |
| 101 | ) | 91 | ) |
| 102 | text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()} | 92 | text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()} |
| 103 | state_dict.update(text_encoder_state_dict) | 93 | state_dict.update(text_encoder_state_dict) |
| 104 | lora_config["text_encoder_peft_config"] = text_encoder.get_peft_config_as_dict(inference=True) | 94 | lora_config["text_encoder_peft_config"] = text_encoder_.get_peft_config_as_dict(inference=True) |
| 105 | 95 | ||
| 106 | accelerator.print(state_dict) | 96 | accelerator.print(state_dict) |
| 107 | accelerator.save(state_dict, checkpoint_output_dir / f"{step}_{postfix}.pt") | 97 | accelerator.save(state_dict, checkpoint_output_dir / f"{step}_{postfix}.pt") |
| @@ -111,11 +101,16 @@ def lora_strategy_callbacks( | |||
| 111 | 101 | ||
| 112 | @torch.no_grad() | 102 | @torch.no_grad() |
| 113 | def on_sample(step): | 103 | def on_sample(step): |
| 104 | vae_dtype = vae.dtype | ||
| 105 | vae.to(dtype=text_encoder.dtype) | ||
| 106 | |||
| 114 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 107 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
| 115 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 108 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
| 116 | 109 | ||
| 117 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 110 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) |
| 118 | 111 | ||
| 112 | vae.to(dtype=vae_dtype) | ||
| 113 | |||
| 119 | del unet_ | 114 | del unet_ |
| 120 | del text_encoder_ | 115 | del text_encoder_ |
| 121 | 116 | ||
| @@ -123,7 +118,6 @@ def lora_strategy_callbacks( | |||
| 123 | torch.cuda.empty_cache() | 118 | torch.cuda.empty_cache() |
| 124 | 119 | ||
| 125 | return TrainingCallbacks( | 120 | return TrainingCallbacks( |
| 126 | on_prepare=on_prepare, | ||
| 127 | on_accum_model=on_accum_model, | 121 | on_accum_model=on_accum_model, |
| 128 | on_train=on_train, | 122 | on_train=on_train, |
| 129 | on_eval=on_eval, | 123 | on_eval=on_eval, |
| @@ -147,28 +141,7 @@ def lora_prepare( | |||
| 147 | lora_bias: str = "none", | 141 | lora_bias: str = "none", |
| 148 | **kwargs | 142 | **kwargs |
| 149 | ): | 143 | ): |
| 150 | unet_config = LoraConfig( | 144 | return accelerator.prepare(text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) + ({},) |
| 151 | r=lora_rank, | ||
| 152 | lora_alpha=lora_alpha, | ||
| 153 | target_modules=UNET_TARGET_MODULES, | ||
| 154 | lora_dropout=lora_dropout, | ||
| 155 | bias=lora_bias, | ||
| 156 | ) | ||
| 157 | unet = LoraModel(unet_config, unet) | ||
| 158 | |||
| 159 | text_encoder_config = LoraConfig( | ||
| 160 | r=lora_rank, | ||
| 161 | lora_alpha=lora_alpha, | ||
| 162 | target_modules=TEXT_ENCODER_TARGET_MODULES, | ||
| 163 | lora_dropout=lora_dropout, | ||
| 164 | bias=lora_bias, | ||
| 165 | ) | ||
| 166 | text_encoder = LoraModel(text_encoder_config, text_encoder) | ||
| 167 | |||
| 168 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 169 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 170 | |||
| 171 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} | ||
| 172 | 145 | ||
| 173 | 146 | ||
| 174 | lora_strategy = TrainingStrategy( | 147 | lora_strategy = TrainingStrategy( |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 2038e34..10bc6d7 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -78,6 +78,7 @@ def textual_inversion_strategy_callbacks( | |||
| 78 | power=ema_power, | 78 | power=ema_power, |
| 79 | max_value=ema_max_decay, | 79 | max_value=ema_max_decay, |
| 80 | ) | 80 | ) |
| 81 | ema_embeddings.to(accelerator.device) | ||
| 81 | else: | 82 | else: |
| 82 | ema_embeddings = None | 83 | ema_embeddings = None |
| 83 | 84 | ||
| @@ -92,15 +93,6 @@ def textual_inversion_strategy_callbacks( | |||
| 92 | def on_accum_model(): | 93 | def on_accum_model(): |
| 93 | return text_encoder.text_model.embeddings.temp_token_embedding | 94 | return text_encoder.text_model.embeddings.temp_token_embedding |
| 94 | 95 | ||
| 95 | def on_prepare(): | ||
| 96 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
| 97 | |||
| 98 | if ema_embeddings is not None: | ||
| 99 | ema_embeddings.to(accelerator.device) | ||
| 100 | |||
| 101 | if gradient_checkpointing: | ||
| 102 | unet.train() | ||
| 103 | |||
| 104 | @contextmanager | 96 | @contextmanager |
| 105 | def on_train(epoch: int): | 97 | def on_train(epoch: int): |
| 106 | tokenizer.train() | 98 | tokenizer.train() |
| @@ -177,7 +169,6 @@ def textual_inversion_strategy_callbacks( | |||
| 177 | torch.cuda.empty_cache() | 169 | torch.cuda.empty_cache() |
| 178 | 170 | ||
| 179 | return TrainingCallbacks( | 171 | return TrainingCallbacks( |
| 180 | on_prepare=on_prepare, | ||
| 181 | on_accum_model=on_accum_model, | 172 | on_accum_model=on_accum_model, |
| 182 | on_train=on_train, | 173 | on_train=on_train, |
| 183 | on_eval=on_eval, | 174 | on_eval=on_eval, |
| @@ -197,6 +188,7 @@ def textual_inversion_prepare( | |||
| 197 | train_dataloader: DataLoader, | 188 | train_dataloader: DataLoader, |
| 198 | val_dataloader: Optional[DataLoader], | 189 | val_dataloader: Optional[DataLoader], |
| 199 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 190 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 191 | gradient_checkpointing: bool = False, | ||
| 200 | **kwargs | 192 | **kwargs |
| 201 | ): | 193 | ): |
| 202 | weight_dtype = torch.float32 | 194 | weight_dtype = torch.float32 |
| @@ -207,7 +199,17 @@ def textual_inversion_prepare( | |||
| 207 | 199 | ||
| 208 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 200 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 209 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 201 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler) |
| 202 | |||
| 210 | unet.to(accelerator.device, dtype=weight_dtype) | 203 | unet.to(accelerator.device, dtype=weight_dtype) |
| 204 | unet.requires_grad_(False) | ||
| 205 | unet.eval() | ||
| 206 | if gradient_checkpointing: | ||
| 207 | unet.train() | ||
| 208 | |||
| 209 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 210 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 211 | text_encoder.eval() | ||
| 212 | |||
| 211 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} | 213 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} |
| 212 | 214 | ||
| 213 | 215 | ||
