diff options
Diffstat (limited to 'training/strategy/ti.py')
| -rw-r--r-- | training/strategy/ti.py | 38 |
1 files changed, 29 insertions, 9 deletions
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 14bdafd..d306f18 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -59,14 +59,11 @@ def textual_inversion_strategy_callbacks( | |||
| 59 | save_samples_ = partial( | 59 | save_samples_ = partial( |
| 60 | save_samples, | 60 | save_samples, |
| 61 | accelerator=accelerator, | 61 | accelerator=accelerator, |
| 62 | unet=unet, | ||
| 63 | text_encoder=text_encoder, | ||
| 64 | tokenizer=tokenizer, | 62 | tokenizer=tokenizer, |
| 65 | vae=vae, | 63 | vae=vae, |
| 66 | sample_scheduler=sample_scheduler, | 64 | sample_scheduler=sample_scheduler, |
| 67 | train_dataloader=train_dataloader, | 65 | train_dataloader=train_dataloader, |
| 68 | val_dataloader=val_dataloader, | 66 | val_dataloader=val_dataloader, |
| 69 | dtype=weight_dtype, | ||
| 70 | output_dir=sample_output_dir, | 67 | output_dir=sample_output_dir, |
| 71 | seed=seed, | 68 | seed=seed, |
| 72 | batch_size=sample_batch_size, | 69 | batch_size=sample_batch_size, |
| @@ -94,7 +91,7 @@ def textual_inversion_strategy_callbacks( | |||
| 94 | else: | 91 | else: |
| 95 | return nullcontext() | 92 | return nullcontext() |
| 96 | 93 | ||
| 97 | def on_model(): | 94 | def on_accum_model(): |
| 98 | return text_encoder.text_model.embeddings.temp_token_embedding | 95 | return text_encoder.text_model.embeddings.temp_token_embedding |
| 99 | 96 | ||
| 100 | def on_prepare(): | 97 | def on_prepare(): |
| @@ -149,11 +146,29 @@ def textual_inversion_strategy_callbacks( | |||
| 149 | @torch.no_grad() | 146 | @torch.no_grad() |
| 150 | def on_sample(step): | 147 | def on_sample(step): |
| 151 | with ema_context(): | 148 | with ema_context(): |
| 152 | save_samples_(step=step) | 149 | unet_ = accelerator.unwrap_model(unet) |
| 150 | text_encoder_ = accelerator.unwrap_model(text_encoder) | ||
| 151 | |||
| 152 | orig_unet_dtype = unet_.dtype | ||
| 153 | orig_text_encoder_dtype = text_encoder_.dtype | ||
| 154 | |||
| 155 | unet_.to(dtype=weight_dtype) | ||
| 156 | text_encoder_.to(dtype=weight_dtype) | ||
| 157 | |||
| 158 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | ||
| 159 | |||
| 160 | unet_.to(dtype=orig_unet_dtype) | ||
| 161 | text_encoder_.to(dtype=orig_text_encoder_dtype) | ||
| 162 | |||
| 163 | del unet_ | ||
| 164 | del text_encoder_ | ||
| 165 | |||
| 166 | if torch.cuda.is_available(): | ||
| 167 | torch.cuda.empty_cache() | ||
| 153 | 168 | ||
| 154 | return TrainingCallbacks( | 169 | return TrainingCallbacks( |
| 155 | on_prepare=on_prepare, | 170 | on_prepare=on_prepare, |
| 156 | on_model=on_model, | 171 | on_accum_model=on_accum_model, |
| 157 | on_train=on_train, | 172 | on_train=on_train, |
| 158 | on_eval=on_eval, | 173 | on_eval=on_eval, |
| 159 | on_before_optimize=on_before_optimize, | 174 | on_before_optimize=on_before_optimize, |
| @@ -168,7 +183,11 @@ def textual_inversion_prepare( | |||
| 168 | accelerator: Accelerator, | 183 | accelerator: Accelerator, |
| 169 | text_encoder: CLIPTextModel, | 184 | text_encoder: CLIPTextModel, |
| 170 | unet: UNet2DConditionModel, | 185 | unet: UNet2DConditionModel, |
| 171 | *args | 186 | optimizer: torch.optim.Optimizer, |
| 187 | train_dataloader: DataLoader, | ||
| 188 | val_dataloader: Optional[DataLoader], | ||
| 189 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 190 | **kwargs | ||
| 172 | ): | 191 | ): |
| 173 | weight_dtype = torch.float32 | 192 | weight_dtype = torch.float32 |
| 174 | if accelerator.state.mixed_precision == "fp16": | 193 | if accelerator.state.mixed_precision == "fp16": |
| @@ -176,9 +195,10 @@ def textual_inversion_prepare( | |||
| 176 | elif accelerator.state.mixed_precision == "bf16": | 195 | elif accelerator.state.mixed_precision == "bf16": |
| 177 | weight_dtype = torch.bfloat16 | 196 | weight_dtype = torch.bfloat16 |
| 178 | 197 | ||
| 179 | prepped = accelerator.prepare(text_encoder, *args) | 198 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 199 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 180 | unet.to(accelerator.device, dtype=weight_dtype) | 200 | unet.to(accelerator.device, dtype=weight_dtype) |
| 181 | return (prepped[0], unet) + prepped[1:] | 201 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} |
| 182 | 202 | ||
| 183 | 203 | ||
| 184 | textual_inversion_strategy = TrainingStrategy( | 204 | textual_inversion_strategy = TrainingStrategy( |
