diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/functional.py | 31 | ||||
| -rw-r--r-- | training/strategy/dreambooth.py | 35 | ||||
| -rw-r--r-- | training/strategy/lora.py | 147 | ||||
| -rw-r--r-- | training/strategy/ti.py | 38 |
4 files changed, 214 insertions, 37 deletions
diff --git a/training/functional.py b/training/functional.py index c373ac9..8f47734 100644 --- a/training/functional.py +++ b/training/functional.py | |||
| @@ -34,7 +34,7 @@ def const(result=None): | |||
| 34 | @dataclass | 34 | @dataclass |
| 35 | class TrainingCallbacks(): | 35 | class TrainingCallbacks(): |
| 36 | on_prepare: Callable[[], None] = const() | 36 | on_prepare: Callable[[], None] = const() |
| 37 | on_model: Callable[[], torch.nn.Module] = const(None) | 37 | on_accum_model: Callable[[], torch.nn.Module] = const(None) |
| 38 | on_log: Callable[[], dict[str, Any]] = const({}) | 38 | on_log: Callable[[], dict[str, Any]] = const({}) |
| 39 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) | 39 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) |
| 40 | on_before_optimize: Callable[[float, int], None] = const() | 40 | on_before_optimize: Callable[[float, int], None] = const() |
| @@ -51,7 +51,11 @@ class TrainingStrategyPrepareCallable(Protocol): | |||
| 51 | accelerator: Accelerator, | 51 | accelerator: Accelerator, |
| 52 | text_encoder: CLIPTextModel, | 52 | text_encoder: CLIPTextModel, |
| 53 | unet: UNet2DConditionModel, | 53 | unet: UNet2DConditionModel, |
| 54 | *args | 54 | optimizer: torch.optim.Optimizer, |
| 55 | train_dataloader: DataLoader, | ||
| 56 | val_dataloader: Optional[DataLoader], | ||
| 57 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 58 | **kwargs | ||
| 55 | ) -> Tuple: ... | 59 | ) -> Tuple: ... |
| 56 | 60 | ||
| 57 | 61 | ||
| @@ -92,7 +96,6 @@ def save_samples( | |||
| 92 | sample_scheduler: DPMSolverMultistepScheduler, | 96 | sample_scheduler: DPMSolverMultistepScheduler, |
| 93 | train_dataloader: DataLoader, | 97 | train_dataloader: DataLoader, |
| 94 | val_dataloader: Optional[DataLoader], | 98 | val_dataloader: Optional[DataLoader], |
| 95 | dtype: torch.dtype, | ||
| 96 | output_dir: Path, | 99 | output_dir: Path, |
| 97 | seed: int, | 100 | seed: int, |
| 98 | step: int, | 101 | step: int, |
| @@ -107,15 +110,6 @@ def save_samples( | |||
| 107 | grid_cols = min(batch_size, 4) | 110 | grid_cols = min(batch_size, 4) |
| 108 | grid_rows = (num_batches * batch_size) // grid_cols | 111 | grid_rows = (num_batches * batch_size) // grid_cols |
| 109 | 112 | ||
| 110 | unet = accelerator.unwrap_model(unet) | ||
| 111 | text_encoder = accelerator.unwrap_model(text_encoder) | ||
| 112 | |||
| 113 | orig_unet_dtype = unet.dtype | ||
| 114 | orig_text_encoder_dtype = text_encoder.dtype | ||
| 115 | |||
| 116 | unet.to(dtype=dtype) | ||
| 117 | text_encoder.to(dtype=dtype) | ||
| 118 | |||
| 119 | pipeline = VlpnStableDiffusion( | 113 | pipeline = VlpnStableDiffusion( |
| 120 | text_encoder=text_encoder, | 114 | text_encoder=text_encoder, |
| 121 | vae=vae, | 115 | vae=vae, |
| @@ -172,11 +166,6 @@ def save_samples( | |||
| 172 | image_grid = make_grid(all_samples, grid_rows, grid_cols) | 166 | image_grid = make_grid(all_samples, grid_rows, grid_cols) |
| 173 | image_grid.save(file_path, quality=85) | 167 | image_grid.save(file_path, quality=85) |
| 174 | 168 | ||
| 175 | unet.to(dtype=orig_unet_dtype) | ||
| 176 | text_encoder.to(dtype=orig_text_encoder_dtype) | ||
| 177 | |||
| 178 | del unet | ||
| 179 | del text_encoder | ||
| 180 | del generator | 169 | del generator |
| 181 | del pipeline | 170 | del pipeline |
| 182 | 171 | ||
| @@ -393,7 +382,7 @@ def train_loop( | |||
| 393 | ) | 382 | ) |
| 394 | global_progress_bar.set_description("Total progress") | 383 | global_progress_bar.set_description("Total progress") |
| 395 | 384 | ||
| 396 | model = callbacks.on_model() | 385 | model = callbacks.on_accum_model() |
| 397 | on_log = callbacks.on_log | 386 | on_log = callbacks.on_log |
| 398 | on_train = callbacks.on_train | 387 | on_train = callbacks.on_train |
| 399 | on_before_optimize = callbacks.on_before_optimize | 388 | on_before_optimize = callbacks.on_before_optimize |
| @@ -559,8 +548,10 @@ def train( | |||
| 559 | prior_loss_weight: float = 1.0, | 548 | prior_loss_weight: float = 1.0, |
| 560 | **kwargs, | 549 | **kwargs, |
| 561 | ): | 550 | ): |
| 562 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = strategy.prepare( | 551 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, extra = strategy.prepare( |
| 563 | accelerator, text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 552 | accelerator, text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, **kwargs) |
| 553 | |||
| 554 | kwargs.update(extra) | ||
| 564 | 555 | ||
| 565 | vae.to(accelerator.device, dtype=dtype) | 556 | vae.to(accelerator.device, dtype=dtype) |
| 566 | 557 | ||
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index e88bf90..b4c77f3 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
| @@ -61,14 +61,11 @@ def dreambooth_strategy_callbacks( | |||
| 61 | save_samples_ = partial( | 61 | save_samples_ = partial( |
| 62 | save_samples, | 62 | save_samples, |
| 63 | accelerator=accelerator, | 63 | accelerator=accelerator, |
| 64 | unet=unet, | ||
| 65 | text_encoder=text_encoder, | ||
| 66 | tokenizer=tokenizer, | 64 | tokenizer=tokenizer, |
| 67 | vae=vae, | 65 | vae=vae, |
| 68 | sample_scheduler=sample_scheduler, | 66 | sample_scheduler=sample_scheduler, |
| 69 | train_dataloader=train_dataloader, | 67 | train_dataloader=train_dataloader, |
| 70 | val_dataloader=val_dataloader, | 68 | val_dataloader=val_dataloader, |
| 71 | dtype=weight_dtype, | ||
| 72 | output_dir=sample_output_dir, | 69 | output_dir=sample_output_dir, |
| 73 | seed=seed, | 70 | seed=seed, |
| 74 | batch_size=sample_batch_size, | 71 | batch_size=sample_batch_size, |
| @@ -94,7 +91,7 @@ def dreambooth_strategy_callbacks( | |||
| 94 | else: | 91 | else: |
| 95 | return nullcontext() | 92 | return nullcontext() |
| 96 | 93 | ||
| 97 | def on_model(): | 94 | def on_accum_model(): |
| 98 | return unet | 95 | return unet |
| 99 | 96 | ||
| 100 | def on_prepare(): | 97 | def on_prepare(): |
| @@ -172,11 +169,29 @@ def dreambooth_strategy_callbacks( | |||
| 172 | @torch.no_grad() | 169 | @torch.no_grad() |
| 173 | def on_sample(step): | 170 | def on_sample(step): |
| 174 | with ema_context(): | 171 | with ema_context(): |
| 175 | save_samples_(step=step) | 172 | unet_ = accelerator.unwrap_model(unet) |
| 173 | text_encoder_ = accelerator.unwrap_model(text_encoder) | ||
| 174 | |||
| 175 | orig_unet_dtype = unet_.dtype | ||
| 176 | orig_text_encoder_dtype = text_encoder_.dtype | ||
| 177 | |||
| 178 | unet_.to(dtype=weight_dtype) | ||
| 179 | text_encoder_.to(dtype=weight_dtype) | ||
| 180 | |||
| 181 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | ||
| 182 | |||
| 183 | unet_.to(dtype=orig_unet_dtype) | ||
| 184 | text_encoder_.to(dtype=orig_text_encoder_dtype) | ||
| 185 | |||
| 186 | del unet_ | ||
| 187 | del text_encoder_ | ||
| 188 | |||
| 189 | if torch.cuda.is_available(): | ||
| 190 | torch.cuda.empty_cache() | ||
| 176 | 191 | ||
| 177 | return TrainingCallbacks( | 192 | return TrainingCallbacks( |
| 178 | on_prepare=on_prepare, | 193 | on_prepare=on_prepare, |
| 179 | on_model=on_model, | 194 | on_accum_model=on_accum_model, |
| 180 | on_train=on_train, | 195 | on_train=on_train, |
| 181 | on_eval=on_eval, | 196 | on_eval=on_eval, |
| 182 | on_before_optimize=on_before_optimize, | 197 | on_before_optimize=on_before_optimize, |
| @@ -191,9 +206,13 @@ def dreambooth_prepare( | |||
| 191 | accelerator: Accelerator, | 206 | accelerator: Accelerator, |
| 192 | text_encoder: CLIPTextModel, | 207 | text_encoder: CLIPTextModel, |
| 193 | unet: UNet2DConditionModel, | 208 | unet: UNet2DConditionModel, |
| 194 | *args | 209 | optimizer: torch.optim.Optimizer, |
| 210 | train_dataloader: DataLoader, | ||
| 211 | val_dataloader: Optional[DataLoader], | ||
| 212 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 213 | **kwargs | ||
| 195 | ): | 214 | ): |
| 196 | return accelerator.prepare(text_encoder, unet, *args) | 215 | return accelerator.prepare(text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) + ({}) |
| 197 | 216 | ||
| 198 | 217 | ||
| 199 | dreambooth_strategy = TrainingStrategy( | 218 | dreambooth_strategy = TrainingStrategy( |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py new file mode 100644 index 0000000..88d1824 --- /dev/null +++ b/training/strategy/lora.py | |||
| @@ -0,0 +1,147 @@ | |||
| 1 | from contextlib import nullcontext | ||
| 2 | from typing import Optional | ||
| 3 | from functools import partial | ||
| 4 | from contextlib import contextmanager, nullcontext | ||
| 5 | from pathlib import Path | ||
| 6 | |||
| 7 | import torch | ||
| 8 | import torch.nn as nn | ||
| 9 | from torch.utils.data import DataLoader | ||
| 10 | |||
| 11 | from accelerate import Accelerator | ||
| 12 | from transformers import CLIPTextModel | ||
| 13 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 14 | from diffusers.loaders import AttnProcsLayers | ||
| 15 | |||
| 16 | from slugify import slugify | ||
| 17 | |||
| 18 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 19 | from training.util import EMAModel | ||
| 20 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples | ||
| 21 | |||
| 22 | |||
| 23 | def lora_strategy_callbacks( | ||
| 24 | accelerator: Accelerator, | ||
| 25 | unet: UNet2DConditionModel, | ||
| 26 | text_encoder: CLIPTextModel, | ||
| 27 | tokenizer: MultiCLIPTokenizer, | ||
| 28 | vae: AutoencoderKL, | ||
| 29 | sample_scheduler: DPMSolverMultistepScheduler, | ||
| 30 | train_dataloader: DataLoader, | ||
| 31 | val_dataloader: Optional[DataLoader], | ||
| 32 | sample_output_dir: Path, | ||
| 33 | checkpoint_output_dir: Path, | ||
| 34 | seed: int, | ||
| 35 | lora_layers: AttnProcsLayers, | ||
| 36 | max_grad_norm: float = 1.0, | ||
| 37 | sample_batch_size: int = 1, | ||
| 38 | sample_num_batches: int = 1, | ||
| 39 | sample_num_steps: int = 20, | ||
| 40 | sample_guidance_scale: float = 7.5, | ||
| 41 | sample_image_size: Optional[int] = None, | ||
| 42 | ): | ||
| 43 | sample_output_dir.mkdir(parents=True, exist_ok=True) | ||
| 44 | checkpoint_output_dir.mkdir(parents=True, exist_ok=True) | ||
| 45 | |||
| 46 | weight_dtype = torch.float32 | ||
| 47 | if accelerator.state.mixed_precision == "fp16": | ||
| 48 | weight_dtype = torch.float16 | ||
| 49 | elif accelerator.state.mixed_precision == "bf16": | ||
| 50 | weight_dtype = torch.bfloat16 | ||
| 51 | |||
| 52 | save_samples_ = partial( | ||
| 53 | save_samples, | ||
| 54 | accelerator=accelerator, | ||
| 55 | unet=unet, | ||
| 56 | text_encoder=text_encoder, | ||
| 57 | tokenizer=tokenizer, | ||
| 58 | vae=vae, | ||
| 59 | sample_scheduler=sample_scheduler, | ||
| 60 | train_dataloader=train_dataloader, | ||
| 61 | val_dataloader=val_dataloader, | ||
| 62 | output_dir=sample_output_dir, | ||
| 63 | seed=seed, | ||
| 64 | batch_size=sample_batch_size, | ||
| 65 | num_batches=sample_num_batches, | ||
| 66 | num_steps=sample_num_steps, | ||
| 67 | guidance_scale=sample_guidance_scale, | ||
| 68 | image_size=sample_image_size, | ||
| 69 | ) | ||
| 70 | |||
| 71 | def on_prepare(): | ||
| 72 | lora_layers.requires_grad_(True) | ||
| 73 | |||
| 74 | def on_accum_model(): | ||
| 75 | return unet | ||
| 76 | |||
| 77 | @contextmanager | ||
| 78 | def on_train(epoch: int): | ||
| 79 | tokenizer.train() | ||
| 80 | yield | ||
| 81 | |||
| 82 | @contextmanager | ||
| 83 | def on_eval(): | ||
| 84 | tokenizer.eval() | ||
| 85 | yield | ||
| 86 | |||
| 87 | def on_before_optimize(lr: float, epoch: int): | ||
| 88 | if accelerator.sync_gradients: | ||
| 89 | accelerator.clip_grad_norm_(lora_layers.parameters(), max_grad_norm) | ||
| 90 | |||
| 91 | @torch.no_grad() | ||
| 92 | def on_checkpoint(step, postfix): | ||
| 93 | print(f"Saving checkpoint for step {step}...") | ||
| 94 | orig_unet_dtype = unet.dtype | ||
| 95 | unet.to(dtype=torch.float32) | ||
| 96 | unet.save_attn_procs(checkpoint_output_dir.joinpath(f"{step}_{postfix}")) | ||
| 97 | unet.to(dtype=orig_unet_dtype) | ||
| 98 | |||
| 99 | @torch.no_grad() | ||
| 100 | def on_sample(step): | ||
| 101 | orig_unet_dtype = unet.dtype | ||
| 102 | unet.to(dtype=weight_dtype) | ||
| 103 | save_samples_(step=step) | ||
| 104 | unet.to(dtype=orig_unet_dtype) | ||
| 105 | |||
| 106 | if torch.cuda.is_available(): | ||
| 107 | torch.cuda.empty_cache() | ||
| 108 | |||
| 109 | return TrainingCallbacks( | ||
| 110 | on_prepare=on_prepare, | ||
| 111 | on_accum_model=on_accum_model, | ||
| 112 | on_train=on_train, | ||
| 113 | on_eval=on_eval, | ||
| 114 | on_before_optimize=on_before_optimize, | ||
| 115 | on_checkpoint=on_checkpoint, | ||
| 116 | on_sample=on_sample, | ||
| 117 | ) | ||
| 118 | |||
| 119 | |||
| 120 | def lora_prepare( | ||
| 121 | accelerator: Accelerator, | ||
| 122 | text_encoder: CLIPTextModel, | ||
| 123 | unet: UNet2DConditionModel, | ||
| 124 | optimizer: torch.optim.Optimizer, | ||
| 125 | train_dataloader: DataLoader, | ||
| 126 | val_dataloader: Optional[DataLoader], | ||
| 127 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 128 | lora_layers: AttnProcsLayers, | ||
| 129 | **kwargs | ||
| 130 | ): | ||
| 131 | weight_dtype = torch.float32 | ||
| 132 | if accelerator.state.mixed_precision == "fp16": | ||
| 133 | weight_dtype = torch.float16 | ||
| 134 | elif accelerator.state.mixed_precision == "bf16": | ||
| 135 | weight_dtype = torch.bfloat16 | ||
| 136 | |||
| 137 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 138 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 139 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 140 | text_encoder.to(accelerator.device, dtype=weight_dtype) | ||
| 141 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {"lora_layers": lora_layers} | ||
| 142 | |||
| 143 | |||
| 144 | lora_strategy = TrainingStrategy( | ||
| 145 | callbacks=lora_strategy_callbacks, | ||
| 146 | prepare=lora_prepare, | ||
| 147 | ) | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 14bdafd..d306f18 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -59,14 +59,11 @@ def textual_inversion_strategy_callbacks( | |||
| 59 | save_samples_ = partial( | 59 | save_samples_ = partial( |
| 60 | save_samples, | 60 | save_samples, |
| 61 | accelerator=accelerator, | 61 | accelerator=accelerator, |
| 62 | unet=unet, | ||
| 63 | text_encoder=text_encoder, | ||
| 64 | tokenizer=tokenizer, | 62 | tokenizer=tokenizer, |
| 65 | vae=vae, | 63 | vae=vae, |
| 66 | sample_scheduler=sample_scheduler, | 64 | sample_scheduler=sample_scheduler, |
| 67 | train_dataloader=train_dataloader, | 65 | train_dataloader=train_dataloader, |
| 68 | val_dataloader=val_dataloader, | 66 | val_dataloader=val_dataloader, |
| 69 | dtype=weight_dtype, | ||
| 70 | output_dir=sample_output_dir, | 67 | output_dir=sample_output_dir, |
| 71 | seed=seed, | 68 | seed=seed, |
| 72 | batch_size=sample_batch_size, | 69 | batch_size=sample_batch_size, |
| @@ -94,7 +91,7 @@ def textual_inversion_strategy_callbacks( | |||
| 94 | else: | 91 | else: |
| 95 | return nullcontext() | 92 | return nullcontext() |
| 96 | 93 | ||
| 97 | def on_model(): | 94 | def on_accum_model(): |
| 98 | return text_encoder.text_model.embeddings.temp_token_embedding | 95 | return text_encoder.text_model.embeddings.temp_token_embedding |
| 99 | 96 | ||
| 100 | def on_prepare(): | 97 | def on_prepare(): |
| @@ -149,11 +146,29 @@ def textual_inversion_strategy_callbacks( | |||
| 149 | @torch.no_grad() | 146 | @torch.no_grad() |
| 150 | def on_sample(step): | 147 | def on_sample(step): |
| 151 | with ema_context(): | 148 | with ema_context(): |
| 152 | save_samples_(step=step) | 149 | unet_ = accelerator.unwrap_model(unet) |
| 150 | text_encoder_ = accelerator.unwrap_model(text_encoder) | ||
| 151 | |||
| 152 | orig_unet_dtype = unet_.dtype | ||
| 153 | orig_text_encoder_dtype = text_encoder_.dtype | ||
| 154 | |||
| 155 | unet_.to(dtype=weight_dtype) | ||
| 156 | text_encoder_.to(dtype=weight_dtype) | ||
| 157 | |||
| 158 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | ||
| 159 | |||
| 160 | unet_.to(dtype=orig_unet_dtype) | ||
| 161 | text_encoder_.to(dtype=orig_text_encoder_dtype) | ||
| 162 | |||
| 163 | del unet_ | ||
| 164 | del text_encoder_ | ||
| 165 | |||
| 166 | if torch.cuda.is_available(): | ||
| 167 | torch.cuda.empty_cache() | ||
| 153 | 168 | ||
| 154 | return TrainingCallbacks( | 169 | return TrainingCallbacks( |
| 155 | on_prepare=on_prepare, | 170 | on_prepare=on_prepare, |
| 156 | on_model=on_model, | 171 | on_accum_model=on_accum_model, |
| 157 | on_train=on_train, | 172 | on_train=on_train, |
| 158 | on_eval=on_eval, | 173 | on_eval=on_eval, |
| 159 | on_before_optimize=on_before_optimize, | 174 | on_before_optimize=on_before_optimize, |
| @@ -168,7 +183,11 @@ def textual_inversion_prepare( | |||
| 168 | accelerator: Accelerator, | 183 | accelerator: Accelerator, |
| 169 | text_encoder: CLIPTextModel, | 184 | text_encoder: CLIPTextModel, |
| 170 | unet: UNet2DConditionModel, | 185 | unet: UNet2DConditionModel, |
| 171 | *args | 186 | optimizer: torch.optim.Optimizer, |
| 187 | train_dataloader: DataLoader, | ||
| 188 | val_dataloader: Optional[DataLoader], | ||
| 189 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 190 | **kwargs | ||
| 172 | ): | 191 | ): |
| 173 | weight_dtype = torch.float32 | 192 | weight_dtype = torch.float32 |
| 174 | if accelerator.state.mixed_precision == "fp16": | 193 | if accelerator.state.mixed_precision == "fp16": |
| @@ -176,9 +195,10 @@ def textual_inversion_prepare( | |||
| 176 | elif accelerator.state.mixed_precision == "bf16": | 195 | elif accelerator.state.mixed_precision == "bf16": |
| 177 | weight_dtype = torch.bfloat16 | 196 | weight_dtype = torch.bfloat16 |
| 178 | 197 | ||
| 179 | prepped = accelerator.prepare(text_encoder, *args) | 198 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 199 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 180 | unet.to(accelerator.device, dtype=weight_dtype) | 200 | unet.to(accelerator.device, dtype=weight_dtype) |
| 181 | return (prepped[0], unet) + prepped[1:] | 201 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} |
| 182 | 202 | ||
| 183 | 203 | ||
| 184 | textual_inversion_strategy = TrainingStrategy( | 204 | textual_inversion_strategy = TrainingStrategy( |
