summaryrefslogtreecommitdiffstats
path: root/schedulers/scheduling_unipc_multistep.py
blob: ff5db248355b1f7542edc04e741cf96c943220fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Union

import numpy as np
import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
    UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of 
    a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
    UniPC is by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional 
    sampling. It can also be applied to both noise prediction model and data prediction model. The corrector
    UniC can be also applied after any off-the-shelf solvers to increase the order of accuracy.

    For more details, see the original paper: https://arxiv.org/abs/2302.04867

    Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We
    recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.

    We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
    diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
    thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
    stable-diffusion).

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        solver_order (`int`, default `2`):
            the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of
            accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
            use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
            models (such as stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487).
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `predict_x0=True`.
        predict_x0 (`bool`, default `True`):
            whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details
        solver_type (`str`, default `bh1`):
            the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use
            `bh2` otherwise.
        lower_order_final (`bool`, default `True`):
            whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
            find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
        disable_corrector (`list`, default `[]`):
            decide which step to disable the corrector. For large guidance scale, the misalignment between the
            `epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be 
            mitigated by disable the corrector at the first few steps (e.g., disable_corrector=[0])
        solver_p (`SchedulerMixin`):
            can be any other scheduler. If specified, the algorithm will become solver_p + UniC.
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
        solver_type: str = "bh1",
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps
        timesteps = (
            np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
            .round()[::-1][:-1]
            .copy()
            .astype(np.int64)
        )
        self.timesteps = torch.from_numpy(timesteps).to(device)
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        if self.solver_p:
            self.solver_p.set_timesteps(num_inference_steps, device=device)

    def convert_model_output(
        self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
    ):
        r"""
        Convert the model output to the corresponding type that the algorithm PC needs.

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.

        Returns:
            `torch.FloatTensor`: the converted model output.
        """
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
                # Dynamic thresholding in https://arxiv.org/abs/2205.11487
                orig_dtype = x0_pred.dtype
                if orig_dtype not in [torch.float, torch.double]:
                    x0_pred = x0_pred.float()
                dynamic_max_val = torch.quantile(
                    torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1
                )
                dynamic_max_val = torch.maximum(
                    dynamic_max_val,
                    self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device),
                )[(...,) + (None,) * (x0_pred.ndim - 1)]
                x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
                x0_pred = x0_pred.type(orig_dtype)
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

    def multistep_uni_p_bh_update(
        self,
        model_output: torch.FloatTensor,
        prev_timestep: int,
        sample: torch.FloatTensor,
        order: int,
    ):
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
            model_output (`torch.FloatTensor`):
                direct outputs from learned diffusion model at the current timestep.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            order (`int`): the order of UniP at this step, also the p in UniPC-p.

        Returns:
            `torch.FloatTensor`: the sample tensor at the previous timestep.
        """
        timestep_list = self.timestep_list
        model_output_list = self.model_outputs

        s0, t = self.timestep_list[-1], prev_timestep
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

        lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
        alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
        sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
            si = timestep_list[-(i + 1)]
            mi = model_output_list[-(i + 1)]
            lambda_si = self.lambda_t[si]
            rk = ((lambda_si - lambda_s0) / h)
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == 'bh1':
            B_h = hh
        elif self.config.solver_type == 'bh2':
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= (i + 1)
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = (
                sigma_t / sigma_s0 * x
                - alpha_t * h_phi_1 * m0
            )
            if D1s is not None:
                pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = (
                alpha_t / alpha_s0 * x
                - sigma_t * h_phi_1 * m0
            )
            if D1s is not None:
                pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
        this_model_output: torch.FloatTensor,
        this_timestep: int,
        last_sample: torch.FloatTensor,
        this_sample: torch.FloatTensor,
        order: int,
    ):
        """
        One step for the UniC (B(h) version). 

        Args:
            this_model_output (`torch.FloatTensor`): the model outputs at `x_t`
            this_timestep (`int`): the current timestep `t`
            last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}`
            this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}`
            order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy 
                should be order + 1

        Returns:
            `torch.FloatTensor`: the corrected sample tensor at the current timestep.
        """
        timestep_list = self.timestep_list
        model_output_list = self.model_outputs

        s0, t = timestep_list[-1], this_timestep
        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

        lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
        alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
        sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
            si = timestep_list[-(i + 1)]
            mi = model_output_list[-(i + 1)]
            lambda_si = self.lambda_t[si]
            rk = ((lambda_si - lambda_s0) / h)
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == 'bh1':
            B_h = hh
        elif self.config.solver_type == 'bh2':
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= (i + 1)
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
            rhos_c = torch.linalg.solve(R, b)

        if self.predict_x0:
            x_t_ = (
                sigma_t / sigma_s0 * x
                - alpha_t * h_phi_1 * m0
            )
            if D1s is not None:
                corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
            else:
                corr_res = 0
            D1_t = (model_t - m0)
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = (
                alpha_t / alpha_s0 * x
                - sigma_t * h_phi_1 * m0
            )
            if D1s is not None:
                corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
            else:
                corr_res = 0
            D1_t = (model_t - m0)
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ):
        # -> Union[SchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the multistep UniPC.

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.

        """

        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero()
        if len(step_index) == 0:
            step_index = len(self.timesteps) - 1
        else:
            step_index = step_index.item()

        use_corrector = step_index > 0 and step_index - 1 not in self.disable_corrector  # step_index not in self.disable_corrector

        model_output_convert = self.convert_model_output(model_output, timestep, sample)
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                this_timestep=timestep,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        # now prepare to run the predictor
        prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
            this_order = min(self.config.solver_order, len(self.timesteps) - step_index)
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            prev_timestep=prev_timestep,
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs):  # -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ):
        # -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps